Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
a, Ta thấy A chia hết cho 7 (nguyên tố)
Có : 7^2;7^3;....;7^10 đều chia hết cho 49 mà 7 ko chia hết cho 49
=> A ko chia hết cho 49
=> A chia hết cho 7 (nguyên tố ) mà A ko chia hết cho 49=7^2
=> A ko phải là số cp
Tương tự câu a : b, b chia hết cho 11 (nguyên tố) nhưng ko chia hết cho 11^2 => b ko chính phương
c, Vì 10^10 có tận cùng là 0
=> c có tận cùng là 8
=> c ko chính phương
k mk nha
a giải luôn cho e nhé
7A=7+72+73+...+72008
7A-A=[7+72+73+...+72008]-[1+7+72+..+72007]
6A=72008-1
A=72008-1/6
b,Tương tư nhân B vs 4 là ra
Mình chỉ trả lời được 2 câu đầu thôi nhé:
a.A= \(1+7+7^2+7^3+...+7^{2007}\)
A.7 = \(7+7^2+7^3+7^4+...+7^{2008}\)
A7-A = \(\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
A6 =\(7^{2008}-1\)
\(\Rightarrow A=7^{2008}-1\)
Câu còn lại làm tương tự bạn nhé
a, A = 1+7+72+73+...+710
7A = 7+72+73+74+...+711
6A = 7A - A = 711 - 1
=> A = \(\frac{7^{11}-1}{6}\)
b, B = 1+3+32+33+...+3100
3B = 3+32+33+34+....+3101
2B = 3B - B = 3101 - 1
=> B = \(\frac{3^{101}-1}{2}\)
a) \(A=7^{11}--7\)
b) \(B=3^{101}-3\)