Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 + 2 + 3 + 4 + 2017 + 2018
2S = 2019 + 2019 + 2019 + ... + 2019(có số hạng)
S = 2019 x 2018 : 2
S = 2037881
1 + 4 + 7 + ...+ 100
2S= 101 + 101 +...+101(có 34 số hạng)
S= 101 x 34 : 2 = 1717
minh cho cong thuc ban tu giai nha
[(so dau + so cuoi) x so so hang ]/2
1 . Cách tính số hạng
( số cuối - số đầu ) : khoảng cách + 1
Cách tính tổng của 1 dãy :
( số đầu + số cuối ) . khoảng cách : 2
b . Dãy số đó có số số hạng là : ( 2005 - 1 ) : 2 + 1 = 1003 ( số )
Tổng của dãy số đó là : ( 2005 + 1 ) x 1003 : 2 = 1006009
3.TỔng là : ( 1024 + 2 ) x 10 : 2 = 5130
A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... - 99 - 100 + 101 + 102
A=(1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) + ... (97 + 98 - 99 - 100) + 101 + 102
A=(-4) + (-4) +...+ (-4) + 203 ( có 25 số -4)
A=25.(-4)+203
A=-100+203
A=103
B = 1 + (-3) + 5 + (-7) + …+ 17 + (- 19)
B=[1 + (-3)] + [5 +(-7)] +...+ [17 + (-19)] Có 5 cặp số
B=(-2) + (-2) +...+ (-2) có 5 số hạng
B=(-2).5
B=-10
C = 1 - 4 + 7 - 10 + … - 100 + 103
C = (1 - 4) + (7 - 10) + … +(97- 100) + 103 có 34 cặp số
C=(-3) + (-3) +...+ (-3) +103 có 34 số -3
C=34.(-3)+103
C=-102+103
C=1
Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)
A=1+4+7+...+100
SSH: (100-1):3+1=34
Tổng: (100+1).34:2=1717
Bài B và C hình như đề bài sai hay sao ấy!!!
1 + 2 + 3 + 4 + ... + 2108
= (2108 + 1).2018 : 2
= 2019.1009
= 2037171
1 + 4 + 7 + ... + 100
số số hạng là :
(100 - 1) : 3 + 1 = 34
tổng :
1 + 4 + 7 + ... + 100
= (100 + 1).34 : 2
= 101.17
= 1717
đặt A = 1 + 2 + 4 + 8 + 16 + ... + 512
A = 1 + 2 + 22 + 23 + 24 + ... + 29
2A = 2 + 22 + 23 + ... + 210
2A - A = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + ... + 29)
A = 210 - 1