\(2^0+2^1+...+2^{98}+2^{99}\)
D

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

a. A= -2012+(-596)+(-201)+496+301

      = -2012+(496-596)+(301-201)

      = -2012+(-100)+100

      = -2012

17 tháng 2 2020

c. 

    Tổng C có số số hạng là:

          (100-1):1+1=100

    Có số cặp là:

          100:2=50(cặp)

Ta có: C= 1-2+3-4+...+99-100

             = (1-2)+(3-4)+...+(99-100)

             = (-1)+(-1)+...+(-1)

             = (-1).50

             =-50

2D= 2101 - 299 - 298 - ...-2

2D-D = [ 2101- 299- 298 - ... -2 ] - [ 2100 - 299 -....-1 ]

D= 2101 - 2100 - 1

5 tháng 11 2016

C  = \(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(C=\frac{\left(101+1\right).101:2}{1+1+...+1+1}\)

\(C=\frac{5151}{51}\)

\(C=101\)

b) \(D=\frac{3737.43-4343.37}{2+4+6+...+100}\)

\(D=\frac{37.101.43-43.101.37}{2+4+6+...+100}\)

\(D=\frac{0}{2+4+6+...+100}\)

\(D=0\)

7 tháng 11 2018

a)C=101

b)d=0

19 tháng 1 2017

dấu này ^ là dấu mũ hả bn

19 tháng 1 2017

\(D=2^{100}-2^{99}-2^{98}-2^{97}-...-2^2-2-1\)

\(D=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2^2+2+1\right)\)

Đặt \(A=2^{99}+2^{98}+2^{97}+...+2^2+2+1\)

\(2A=2^{100}+2^{99}+2^{98}+...+2^3+2^2+2\)

\(2A-A=\left(2^{100}+2^{99}+2^{98}+...+2^3+2^2+2\right)-\left(2^{99}+2^{98}+2^{97}+...+2^2+2+1\right)\)

\(A=2^{100}-1\)

\(\Rightarrow D=2^{100}-\left(2^{100}-1\right)=2^{100}-2^{100}+1=0+1=1\)

26 tháng 2 2020

C=\(\frac{101+100+...+3+2+1}{101-100+...+3-2+1}\)

=\(\frac{\left(101+1\right).101:2}{\left(101-100\right)+...+\left(3-2\right)+1}\) (nhóm 2 số hạng ở MS thì sẽ có 51 nhóm và dư 1 số hang )

=\(\frac{102.101:2}{1+...+1+1}\) ( Ms có 51 số 1)

=\(\frac{51.101}{51}\)=101

D=\(\frac{3737.43-4343.37}{2+4+6+...+100}\)

= \(\frac{37.101.43-43.101.37}{2+4+6+..+100}\)

= \(\frac{0}{2+4+6+...+100}\)

=0

Tick mik nha, thks bạn

23 tháng 5 2016

\(D=\frac{3737.43-4343.37}{2+4+6+...+100}\)

\(D=\frac{37.101.43-43.101.37}{2+4+6+...+100}\)

\(D=\frac{37.\left(101.43-43.101\right)}{2+4+6+...+100}\)

\(D=\frac{37.0}{2+4+6+...+100}\)

\(D=\frac{0}{2+4+6+...+100}=0\)

Vậy \(D=0\)

6 tháng 12 2020

b, \(3737.43-4343.37=\left(37.101\right).43-\left(43.101\right).37=0\)

suy ra B = 0

c, \(D=\frac{2^{12}\left(13+65\right)}{2^{10}.104}+\frac{3^{10}\left(11+5\right)}{3^9.2^4}=\frac{2^{12}.78}{2^{10}.104}+\frac{3^{10}.16}{3^9.2^4}\)

\(=\frac{2^{12}.2.39}{2^{10}.2^3.13}+\frac{3^{10}.2^4}{3^9.2^4}=\frac{39}{13}+3=6\)

8 tháng 12 2020
Cảm ơn bn nhiều nha