K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vẽ \(\Delta\)ABC vuông tại A có B = 75° 

=》 C = 90° - 75° = 15°

=》sinB = AC/BC 

=> sin75° = AC/BC 

=》 cos75° = AB/BC 

=》 tan75° = AC/AB 

=》 cot75° = AB/AC 

23 tháng 8 2020

@༒༎༊༗༛༚༘༔༐♡◇♧{Anh Tuấn}༲༮༯༳༵༱༰༴༶£¥♡♧♤□● : Tính ra giá trị luôn chứ ra tỉ số thì chỉ học cơ bản cũng tính được

24 tháng 4 2017

hinh 37

a) Sin α = b/ a ; Cos α = c / a

Tg α = b / c ; Cotg α = c / b

b) Sin β = Cos α ; Cos β = Sin α

Tg β = Cotg α ; Cotg β = Tg α

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu

24 tháng 4 2017

a) b = a sin α = a cos β
c = a sin β = a cos α

b) b = c tg α = c cotg β
c = b tg β = b cotg α

24 tháng 4 2017

a) b = asin α = acosβ; c = asinβ = acosα

b) b = c.tgβ = c.cotgα

1 tháng 9 2020

Giả sử hình thang cân ABCD có AB = 12cm, CD = 18cm, ˆD=75D^=75∘

Kẻ AHCD,BKCDAH⊥CD,BK⊥CD

Vì tứ giác ABKH là hình chữ nhật nên: AB = HK = 12 (cm)

Ta có: tam giác ADH = tam giác BCK (cạnh huyền, góc nhọn)

Suy ra: DH = CK

Suy ra:

DH=CDHK2=18122=3(cm)DH=CD–HK2=18–122=3(cm)

Trong tam giác vuông ADH, ta có:

AH=DH.tgD=3.tg7511,196(cm)AH=DH.tgD=3.tg75∘≈11,196(cm)

Vậy:

SABCD=AB+CD2.AH12+182.11,196=167,94SABCD=AB+CD2.AH≈12+182.11,196=167,94 (cm2).

17 tháng 4 2017

Xem lại chương lượng giác trong tam giác vuông nhé

24 tháng 7 2018

a) sin a=0,8

Ta có: \(\sin^2a+\cos^2a=1\)

\(\Rightarrow\cos^2a=1-\sin^2a=1-0,8^2=0,36\)

\(\Rightarrow\orbr{\begin{cases}\cos a=0,6\\\cos a=-0,6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\tan a=\frac{4}{3}\\\tan a=\frac{-4}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\cot a=\frac{3}{4}\\\cot a=\frac{-3}{4}\end{cases}}\)

24 tháng 7 2018

\(\sin a=0,8\)

\(\sin^2a=1-\sin^2a=1\)

\(\cos^2a=1-\sin^2a=1-0,8^2=0,36\)

\(\Rightarrow\hept{\begin{cases}\cos a=0,6\\\cos a=-0,6\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\tan a=\frac{4}{3}\\\tan a=\frac{-4}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\cot a=\frac{3}{4}\\\cot a=\frac{-3}{4}\end{cases}}\)

Code : Breacker