Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có \
\(\hept{\begin{cases}a>b;c>d\\ab=cd\\a>c\end{cases}}\)
\(\Rightarrow c>d>b\)(vì nếu \(d\le b\)thì \(ab>cd\))
Ta cần chứng minh
\(a+b>c+d\)
\(\Leftrightarrow\frac{cd}{b}+b>c+d\)
\(\Leftrightarrow cd+b^2>cb+db\)
\(\Leftrightarrow\left(cd-cb\right)+\left(b^2-db\right)>0\)
\(\Leftrightarrow\left(d-b\right)\left(c-b\right)>0\)(đúng)
\(\Rightarrow\)ĐPCM
Gọi chiều rộng của hình chữ nhật là x (m)
chiều dài của hình chữ nhật là y (m) Điều kiện : x,y>0
Diện tích ban đầu của hình chữ nhật đó là xy(cm^2)
_Nếu tăng chiều rộng thêm 3m và chiều dài thêm 2m thì diện tích hình chữ nhật sẽ là (x+3)(y+2) cm^2
Ta có phương trình : (x+3)(y+2) - xy = 100 (1)
_Nếu giảm cả chiều dài và chiều rộng đi 2m thì diện tích hình chữ nhật sẽ là (x-2)(y-2) cm^2
Ta có phương trình : xy - (x-2)(y-2) = 68 (2)
Từ (1) và (2), ta có hệ phương trình : bạn tự viết nhé!
(1) <=> xy+2x+3y+6-xy=100 <=> 2x+3y=94 <=> 2x+3y=94
(2) <=> xy-(xy-2x-2y+4)=68 <=> xy-xy+2x+2y-4=68 <=> 2x+2y=72
Lấy (1) trừ cho (2), ta được:
<=> y=22 Ước giản (*) cho 2, ta được x+y=36
<=> 2x+2y=72(*) y=22
<=>y=22
<=>x=36-22=14
Vậy chiều rộng của hình chữ nhật là 14m
chiều dài của hình chữ nhật là 22m
Suy ra diện tích của hình chữ nhật đó là 14*22=308 cm^2
Bài rõ ez mà cx hỏi
Gọi chiều dài là x (x,y>0)
chiều rộng là y
Ta có hpt
\(\hept{\begin{cases}x.y=360\\\left(x-6\right).\left(y+2\right)=360\end{cases}}\)
\(=>\hept{\begin{cases}x=\frac{360}{y}\\\left(\frac{360}{y}-6\right)\left(y+2\right)=360\end{cases}}\)
=> \(=360+\frac{720}{y}-6y-12=360\)
\(=>-6y^2-12y+720=0\)
=>y=10
=> x=36
Gọi chiều dài mảnh đất đó là \(x(m)\)\((x>0)\)
Gọi chiều rộng của mảnh đất là \(y(m)(y>0)\)
Theo điều kiện đầu ta có phương trình : \(x-y=17(1)\)
Theo điều kiện sau ta có phương trình : \(x.y=110(2)\)
Từ \((1)\) và \((2)\) ta có hệ : \(\begin{cases} x-y=17\\ x.y=110 \end{cases} \) Giải hệ ra ta được :\(\begin{cases} x=22(tm)\\ y=5(tm \end{cases} \)
Vậy chiều dài chiều rộng mảnh đất đó lần lượt là \(22(m)\) và \(5(m)\)
Gọi chiều rộng , chiều dài hcn làn lượt là : a,b ( a,b thuộc N sao ; a > b ) (cm)
Có : ab = 40
(a+3).(b+3) = ab+48
=> ab+3a+3b+9 = ab+48
=> 3a+3b = ab+48-9-ab = 39
=> a+b = 13
=> a=13-b
=> 40=ab=(13-b).b = 13b-b^2
=> b^2-13b=-40
=> b^2-13b+40=0
=> (b-5).(b-8) = 0
=> b-5=0 hoặc b-8=0
=> b=5;a=8 hoặc b=8;a=5 => a=8 ; b=5 ( vì a > b )
Vậy .........
Tk mk nha