Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=3+3^2+3^3+...........+3^{100}\)
\(\Leftrightarrow\)\(3S=3^2+3^3+3^4+...........+3^{101}\)
\(\Leftrightarrow\)\(3S-S=3^{101}-3\)
\(\Leftrightarrow\)\(2S=3^{101}-3\)
\(\Leftrightarrow\)\(S=\frac{3^{101}-3}{2}\)
Vậy \(S=\frac{3^{101}-3}{2}\)
\(A=3+3^2+3^3+...+3^{100}\)
\(3A=3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(2A=3^{101}-3\)
\(A=\left(3^{101}-3\right):2\)
Ta có : \(2A+3=3^{101}\)
\(→n=101\)
~ Ủng hộ nhé ~
A = 1 + 3 + 32 + 33 + ... + 399
3A = 3 + 32 + 33 + .. + 3100
3A -A = 3 + 32 + 33 + ... + 3100 - 1 - 3 - 32 - 399
2A = 3100 - 1
B - 2A = 3100 - ( 3100 - 1 ) = 1
\(A=2+2^2+2^3+......+2^{1000}\Rightarrow2A=2^2+2^3+2^4+......+2^{1001}\)
\(\Rightarrow2A-A=A=2^{1001}-2=\left(....2\right)-2=\left(.....0\right)\)
\(B=1+3^2+3^4+.........+3^{100}\Rightarrow9B=3^2+3^4+3^6+......+3^{102}\)
\(\Rightarrow9B-B=8B=3^{102}-1\Rightarrow B=\frac{3^{102}-1}{8}=\frac{\left(.....8\right)}{8}\)
=> B có tận cùng là 1 hoặc 6 nhưng Tổng B gồm 51 số hạng lẻ
=> B có tận cùng là 1
b ) l - 18 l : 6 - l 15 l : 3
= 18 : 6 - 15 : 3
= 3 - 5
= - 2
Tính:
(-2)2.3 -(110+8):(-3)2
=4.3-(1+8):9
=12-9:9
=12-1
=11
Ta có:A=\(1+3+3^2+3^3+...+3^{2012}\)
3A=\(3\cdot\left(1+3+3^2+3^3+...+3^{2012}\right)\)
3A=\(3+3^2+3^3+3^4+...+3^{2013}\)
3A-A=\(\left(3+3^2+3^3+3^4+...+3^{2013}\right)-\left(1+3+3^2+3^3+...+3^{2012}\right)\)
2A=\(3+3^2+3^3+3^4+...+3^{2013}-1-3-3^2-3^3-...-3^{2012}\)
2A=\(\left(3-3\right)+\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2012}-3^{2012}\right)+\left(3^{2013}-1\right)\)
2A=\(0+0+0+...+0+3^{2013}-1\)
2A=\(3^{2013}-1\)
A=\(\frac{3^{2013}-1}{2}\)
B=\(3^{2013}\div2\)
B=\(\frac{3^{2013}}{2}\)
VậyB-A=\(\frac{3^{2013}}{2}-\frac{3^{2013}-1}{2}\)
\(B-A=\frac{3^{2013}-\left(3^{2013}-1\right)}{2}\)
\(B-A=\frac{3^{2013}-3^{2013}+1}{2}\)
\(B-A=\frac{1}{2}=0,5\)
\(C=3-3^2+3^3-...-3^{100}\)
\(=3\left(1-1^2+1^3-...-1^{100}\right)\)
\(=-3\)