\(\left(-3\right)^0+\left(-3\right)^1+...+\left(-3\right)^{2015}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2018

Ta có B= (-3)0+ (-3)1+.....+(-3)2015

=> -3B= -3.[(-3)0+(-3)1+...+(-3)2015]

=> -3B= (-3)1+ (-3)2+....+(-3)2016

=> -3B-B= (-3)1 +(-3)2+....+ (-3)2016 - [(-3)0+(-3)1+....+ (-3) 2015

=> -4B= (-3)2016- (-3)1

=>-4B= (-3)2016+ 1

=> B= (-3)2016+ 1 / -4

27 tháng 11 2018

Mình nhầm, -4B= (-3)2016- (-3)0

21 tháng 2 2020

Trả lời:

\(S=\) \(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)

\(-3S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)

\(-3S-S=\)\([\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(]\)\(-\)\([\)\(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)\(]\)

\(\left(-3-1\right)S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(-\)\(\left(-3\right)^0-\left(-3\right)^1-\left(-3\right)^2-...-\)\(\left(-3\right)^{2015}\)

\(-4S=\)\(\left[\left(-3\right)^1-\left(-3\right)^1\right]\)\(+\)\(\left[\left(-3\right)^2-\left(-3\right)^2\right]\)\(+\)\(...\)\(+\)\(\left[\left(-3\right)^{2015}-\left(-3\right)^{2015}\right]\)\(+\)\(\left[\left(-3\right)^{2016}-\left(-3\right)^0\right]\)

\(-4S=\)\(0+0+...+0+\left(-3\right)^{2016}-1\)

\(-4S=\)\(3^{2016}-1\)

\(S=\frac{-3^{2016}+1}{4}\)

Vậy \(S=\frac{-3^{2016}+1}{4}\)

P/s: Không chắc có đúng ko. 

Hok tốt!

Vuong Dong Yet

28 tháng 3 2018

Ta có : 

\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2015}\)

\(3S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2015}\)

\(3S-S=\left[\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]+\left[\left(-3\right)^0+\left(-3\right)^1+...+\left(-3\right)^{2015}\right]\)

\(2S=\left(-3\right)^{2016}-\left(-3\right)^0\)

\(2S=3^{2016}-1\)

\(S=\frac{3^{2016}-1}{2}\)

Vậy \(S=\frac{3^{2016}-1}{2}\)

Chúc bạn học tốt ~ 

28 tháng 3 2018

= (-3)2016 -1

25 tháng 11 2022

\(\left(-3\right)\cdot B=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2016}\)

=>-4B=(-3)^2016-1

=>\(B=\dfrac{-3^{2016}+1}{4}\)

16 tháng 11 2017

\(A=\left(\frac{3}{4}\right)^{-4}.\left(\frac{-2}{3}\right)^{-3}\)

\(A=\frac{256}{81}.\frac{-27}{8}\)

\(A=\frac{729}{64}\)

\(B=\left(4^3\right)^{-2}.a^{2015}\)

\(B=64^{-2}.a^{2015}\)

\(B=\frac{1}{4096}.a^{2015}\)

\(C=\left[\left(\frac{-1}{3}\right).\frac{2}{5}.\left(\frac{-3}{4}\right)\right]^3\)

\(C=\left[\frac{1}{10}\right]^3\)

\(C=\frac{1}{1000}\)

16 tháng 11 2017

A =\(-\frac{32}{3}\)

B = \(\frac{1}{4096}.a^{2015}\)

C =\(\frac{1}{1000}\)

14 tháng 1 2016

s = \(\left(-3\right)^{2016}-\left(-3\right)^0\)

17 tháng 7 2016

a.

\(-2^3+2^2+\left(-1\right)^{2013}=-8+4-1=-5\)

b.

\(\left(3^3\right)^2-\left[\left(-2\right)^3\right]^2-\left(-5\right)^2=27^2-\left(-8\right)^2-25=729-64-25=640\)

c.

\(2^3+3\times\left(-\frac{1}{2016}\right)^0-\left(\frac{1}{2}\right)^2\times4-\left[\left(-2\right)^2\div\frac{1}{2}\right]=8+3\times0-\frac{1}{4}\times4-\left(4\times2\right)=8+3-1-8=2\)