K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}...\frac{1-98^2}{98^2}.\frac{1-99^2}{99^2}\)

\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{98^2-1}{98^2}.\frac{99^2-1}{99^2}\)

\(\frac{\left(2-1\right).\left(2+1\right)}{2^2}.\frac{\left(3-1\right).\left(3+1\right)}{3^2}.\frac{\left(4-1\right).\left(4+1\right)}{4^2}...\frac{\left(98-1\right)\left(98+1\right)}{98^2}.\frac{\left(99-1\right)\left(99+1\right)}{99^2}\)

\(=\frac{\left(2-1\right).\left(3-1\right).\left(4-1\right)...\left(99-1\right)}{2.3.4...98.99}.\frac{\left(2+1\right).\left(3+1\right).\left(4+1\right)...\left(99+1\right)}{2.3.4...98.99}\)

\(=\frac{1.2.3....98}{2.3.4...98.99}.\frac{3.4.5...100}{2.3.4...98.99}\)

\(=\frac{1}{99}.\frac{100}{2}\)

\(=\frac{50}{99}\)

Chúc bạn học tốt !!!

30 tháng 6 2020

\(A=\frac{2^2-1^2}{\left(1.2\right)^2}+\frac{3^2-2^2}{\left(2.3\right)^2}+\frac{4^2-3^2}{\left(3.4\right)^2}+...+\frac{100^2-99^2}{\left(99.100\right)^2}\)

\(A=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{99^2}-\frac{1}{100^2}\)

\(A=1-\frac{1}{100^2}=\frac{9999}{10000}\)

24 tháng 12 2016

1,tổng quát:  (2k+1)/[k(k+1)^2]

=(2k+1)/k^2(k+1)^2=[(k+1)^^2-k^2]/k^2(k+1)^2=1/k^2-1/(k+1)^2

áp dụng vào ,kết quả =2024/2025

25 tháng 12 2016

Hoàng Phúc  bạn có thể giải chi tiết hơn một chút đc ko???

11 tháng 6 2017

a)  Điều kiện :  \(a\ne-b;b\ne1;a\ne-1\)

\(P=\frac{a^2\left(1+a\right)-b^2\left(1-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^3+a^2+b^3-b^2-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a+b\right)\left(a-b\right)-a^2b^2\left(a+b\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(a+b\right)\left(a^2-ab+b^2+a-b-a^2b^2\right)}{\left(a+b\right)\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+b^2-a^2b^2+a-b-ab}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2\left(1-b^2\right)-\left(1-b^2\right)+a\left(1-b\right)+\left(1-b\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{\left(1-b\right)\left(a^2+a^2b-1-b+a+1\right)}{\left(1-b\right)\left(1+a\right)}\)

\(P=\frac{a^2+a^2b+a-b}{1+a}\)

\(P=\frac{a\left(a+1\right)+b\left(a-1\right)\left(a+1\right)}{1+a}\)

\(P=\frac{\left(a+1\right)\left(a+ab-b\right)}{1+a}\)

P = a + ab - b

b)

P = 3

<=>  a + ab - b = 3

<=>  a(b+1) - (b+1) +1 - 3 = 0

<=>   (b+1)(a-1)  = 2

Ta có bảng sau với a, b nguyên

b+112-1-2
a-121-2-1
b01-2-3
a32-10
so với đk loạiloại 


Vậy (a;b) \(\in\){ (3; 0) ; (0; -3)}

22 tháng 12 2017

thay 1=ab+bc+ca vào M phân tích và rút gọn

22 tháng 12 2017

bác giải ra luôn đi 

9 tháng 5 2017

Câu 2/

\(\frac{a^2+bc}{a^2\left(b+c\right)}+\frac{b^2+ca}{b^2\left(c+a\right)}+\frac{c^2+ab}{c^2\left(a+b\right)}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a^2+bc}{a^2\left(b+c\right)}-\frac{1}{a}+\frac{b^2+ca}{b^2\left(c+a\right)}-\frac{1}{b}+\frac{c^2+ab}{c^2\left(a+b\right)}-\frac{1}{c}\ge0\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(c-a\right)}{a^2\left(b+c\right)}+\frac{\left(a-b\right)\left(c-b\right)}{b^2\left(c+a\right)}+\frac{\left(a-c\right)\left(b-c\right)}{c^2\left(a+b\right)}\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4-a^4b^2c^2-a^2b^4c^2-a^2b^2c^4\ge0\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^4b^2c^2+a^2b^4c^2+a^2b^2c^4\left(1\right)\)

Ma ta có: \(\hept{\begin{cases}a^4b^4+b^4c^4\ge2a^2b^4c^2\left(2\right)\\b^4c^4+c^4a^4\ge2a^2b^2c^4\left(3\right)\\c^4a^4+a^4b^4\ge2a^4b^2c^2\left(4\right)\end{cases}}\)

Cộng (2), (3), (4) vế theo vế rồi rút gọn cho 2 ta được điều phải chứng minh là đúng.

PS: Nếu nghĩ được cách khác đơn giản hơn sẽ chép lên cho b sau. Tạm cách này đã.

9 tháng 5 2017

tks bn nhé, bn giúp mk câu 1 được ko

26 tháng 2 2017

\(\frac{150}{5.8}+\frac{150}{8.11}+\frac{150}{11.14}+.....+\frac{150}{47.50}\)

\(=50.\left(\frac{3}{5.8}+\frac{5}{8.11}+.....+\frac{3}{47.50}\right)\)

\(=50.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+......+\frac{1}{47}-\frac{1}{50}\right)\)

\(=50.\left(\frac{1}{5}-\frac{1}{50}\right)\)

\(=50.\frac{9}{50}=9\)