Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=2.(2100-299-....-22-2-1)
2A= 2101-2100-...-23-22-2
Lấy 2A ở trên trừ đi A ở đề bài ta có
2A-A= (2101-2100-...-23-22-2)-(2100-299-....-22-2-1)
A= 2101-1
Còn kết quả cụ thể thì mình chịu
Triển khai phép tính trên, ta có:
\(\Leftrightarrow\left(2^{99}\cdot2-2^{99}\right)+\left(2^{97}\cdot2-2^{97}\right)+...+\left(2\cdot2-2\right)\)
\(\Leftrightarrow2^{99}+2^{97}+2^{95}+...+2^3+2\)
\(\Leftrightarrow\left(2^{97}\cdot2^2+2^{97}\right)+\left(2^{93}\cdot2^2+2^{93}\right)+...+\left(2^3\cdot2^2+2^3\right)+2\)
\(\Leftrightarrow5\left(2^{97}+2^{93}+2^{89}+...+2^7+2^3\right)+2\)
A = (1002 - 992 )+( 982 - 972 )+ ...+( 22 - 1)
A = (100+99).(100-99)+(98+97).(98-97) + ...+(2+1).(2-1)
A = 199 + 195 + ...+ 3
A = (199+3).[(199-3):4 + 1] : 2
A = 5050
Ta sẽ có ( 2100 + 2101 + 2102 ) : ( 297 + 298 + 299 )
= ( 2100 : 297 ) + ( 2101 : 298 ) + ( 2102 : 299 )
= 23 + 23 + 23
= 23 . 3
= 8 . 3
= 24
Ta thấy:
\(A=1\cdot3+2\cdot4+...+97\cdot99+98\cdot100\)
\(A=1\cdot\left(1+2\right)+2\cdot\left(1+3\right)+...+97\cdot\left(1+98\right)+98\cdot\left(1+99\right)\)
\(A=\left(1+1\cdot2\right)+\left(2+2\cdot3\right)+...+\left(97+97\cdot98\right)+\left(98+98\cdot99\right)\)
\(A=\left(1+2+...+97+98\right)+\left(1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\right)\)
Đặt \(B=1+2+...+97+98\) ; \(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\). Khi đó: \(A=B+C\)
* Do số các số hạng của tổng B là: ( 98 - 1 ) : 1 + 1 = 98 ( số hạng ) nên:
\(B=1+2+...+97+98=\frac{\left(98+1\right)\cdot98}{2}=99\cdot49=4851\)
* Ta thấy:
\(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+...+97\cdot98\cdot3+98\cdot99\cdot3\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+97\cdot98\cdot\left(99-96\right)+98\cdot99\cdot\left(100-97\right)\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+97\cdot98\cdot99-96\cdot97\cdot98+98\cdot99\cdot100-97\cdot98\cdot99\)
\(\Rightarrow3\cdot C=98\cdot99\cdot100\)
\(\Rightarrow C=\frac{98\cdot99\cdot100}{3}\)
\(\Rightarrow C=98\cdot33\cdot100\)
\(\Rightarrow C=323400\)
Vậy: \(A=B+C=4851+323400=328251\)
Ta có: \(A=2^{100}-2^{99}-2^{98}-...-2\)
\(\Rightarrow A=2^{100}-\left(2^{99}+2^{98}+...+2\right)\)
Đặt \(B=2^{99}+2^{98}+...+2\)
\(\Rightarrow2B=2^{100}+2^{99}+...+2^2\)
\(\Rightarrow2B-B=\left(2^{100}+2^{99}+...+2^2\right)-\left(2^{99}+2^{98}+...+2\right)\)
\(\Rightarrow B=2^{100}-2\)
\(\Rightarrow A=2^{100}-\left(2^{100}-2\right)\)
\(\Rightarrow A=2^{100}-2^{100}+2\)
\(\Rightarrow A=2\)
Vậy A= 2
A = 2^100 - 2^99 - 2^98 - ... - 2^2 - 2
A = 2^100 - (2^99 + 2^98 + ... + 2^2 + 2)
Đặt B = 2^99 + 2^98 + ... + 2^2 + 2
2B = 2^100 + 2^99 + ... + 2^3 + 2^2
2B - B = 2^100 - 2 = B
A = 2^100 - B = 2^100 - (2^100 - 2)
A = 2^100 - 2^100 + 2 = 2