K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Đăt A = \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+......+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.....+\frac{1}{7^{100}}\)

\(\Rightarrow7A-A=1-\frac{1}{7^{100}}\)

\(\Rightarrow6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)

13 tháng 3 2015

cho 1 cai dung minh cho ban roi ma

3 tháng 11 2018

trong tích trên có 1 thừa số như thế này:

\(\left(\frac{1}{125}-\frac{1}{5^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{125}\right)\)

=0

=> tích trên bằng 0

18 tháng 7 2016

Câu 1:

\(A=\frac{\left(1+2+3+...+100\right)x\left(101x102-101x101-51-50\right)}{2+4+6+8+...+2048}\)

\(A=\frac{\left(1+2+3+...+100\right)x\left(101x\left(102-101\right)-\left(50+51\right)\right)}{2+4+6+8+...+2048}\)

\(A=\frac{\left(1+2+3+...+100\right)x\left(101-101\right)}{2+4+6+8+...+2048}\)

\(A=\frac{\left(1+2+3+...+100\right)x0}{2+4+6+8+...+2048}\)

\(A=0\)

       Ta có:Số số hạng từ 2 đến 101 là:

                      (101-2):1+1=100(số hạng)

                 Do đó từ 2 đến 101 có số cặp là:

                       100:2=50(cặp)

\(B=\frac{101+100+99+...+3+2+1}{101-100+99-98+3-2+1}\)

\(B=\frac{5151}{51}\)

\(B=101\)

Câu 2:

a)697:\(\frac{15x+364}{x}\)=17

   \(\frac{15x+364}{x}\)=697:17

    \(\frac{15x+364}{x}\)=41

     15x+364=41x

      41x-15x=364

      26x=364

      x=14

Vậy x=14

b)92.4-27=\(\frac{x+350}{x}+315\)

  \(\frac{x+350}{x}+315\)=341

   \(\frac{x+350}{x}\)=26

    x+350=26

    x=26-350

   x=-324

Vậy x=-324

c, 720 : [ 41 - ( 2x -5)] = 40

    [ 41 - ( 2x -5)] =720:40

     [ 41 - ( 2x -5)] =18

      2x-5=41-18

      2x-5=23

      2x=28

      x=14

Vậy x=14

 d, Số số hạng từ 1 đến 100 là:

       (100-1):1+1=100(số hạng)

Tổng dãy số là:
      (100+1)x100:2=5050

          Mà cứ 1 số hạng lại có 1x suy ra có 100x

Ta có:(x+1) + (x+2) +...+ (x+100) = 5750

         (x+x+...+x)+(1+2+...+100)=5750

          100x+5050=5750

          100x=700

           x=7

Vậy x=7

18 tháng 3 2018

Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+.......+\frac{101}{3^{101}}\)

\(\Rightarrow3S=1+\frac{2}{3}+.......+\frac{101}{3^{100}}\)

\(\Rightarrow3S-S=\left(1+\frac{2}{3}+..+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{101}{3^{101}}\right)\)

\(\Rightarrow2S=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+....+\frac{1}{3^{100}}\)

\(\Rightarrow6S< 3+1+........+\frac{1}{3^{99}}\)

\(\Rightarrow6S-2S< \left(3+1+....+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+....+\frac{1}{3^{100}}\right)\)

\(\Rightarrow4S< 3-\frac{1}{3^{100}}< 3\Rightarrow S< \frac{3}{4}\)

18 tháng 3 2018

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{101}{3^{101}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)

\(4A=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)

\(4A=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{100}{3^{101}}\)

\(4A=3-\frac{206}{3^{101}}< 3\)

=>\(4A< 3\)

\(\Rightarrow A< \frac{3}{4}\)

9 tháng 4 2019

\(a,\frac{x+1}{65}+\frac{x+2}{64}=\frac{x+3}{63}+\frac{x+4}{62}\)

\(\Rightarrow\left[\frac{x+1}{65}+1\right]+\left[\frac{x+2}{64}+1\right]=\left[\frac{x+3}{63}+1\right]+\left[\frac{x+4}{62}+1\right]\)

\(\Rightarrow\frac{x+1+65}{65}+\frac{x+2+64}{64}=\frac{x+3+63}{63}+\frac{x+4+62}{62}\)

\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}\)

\(\Rightarrow\frac{x+66}{65}+\frac{x+66}{64}=\frac{x+66}{63}+\frac{x+66}{62}=0\)

\(\Rightarrow\left[x+66\right]\left[\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\right]=0\)

Mà \(\frac{1}{65}+\frac{1}{64}-\frac{1}{63}+\frac{1}{62}\ne0\)

\(\Rightarrow x+66=0\)

\(\Rightarrow x=0-66=-66\)

Auto làm nốt câu b

9 tháng 4 2019

a,  Cộng cả 2 vế với 2 

Ta có \(\frac{x+1}{64}+\frac{x+2}{63}+2=\frac{x+3}{62}+\frac{x+4}{61}+2\)

\(\left(\frac{x+1}{64}+\frac{64}{64}\right)+\left(\frac{x+2}{63}+\frac{63}{63}\right)=\left(\frac{x+3}{62}+\frac{62}{62}\right)+\left(\frac{x+4}{61}+\frac{61}{61}\right)\)

=>  \(\frac{x+65}{64}+\frac{x+65}{63}=\frac{x+65}{62}+\frac{x+65}{61}\)\(\)

=> \(\frac{x+65}{64}+\frac{x+65}{63}-\frac{x+65}{62}-\frac{x+65}{61}=0\)

=> \(\left(x+65\right)\left(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\right)=0\)

Do \(\frac{1}{64}+\frac{1}{63}-\frac{1}{62}-\frac{1}{61}\ne0\)=> \(x+65=0\)

=> \(x=-65\)

b ,  Lm tương tự như Câu a

Chúc bn hok tốt

27 tháng 5 2017

a, Ta có: \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+....+\left(1-\frac{99}{100}\right)\right]\)

\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-100+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)(đpcm)

b, Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(đpcm)

27 tháng 5 2017

a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...\)\(+\frac{99}{100}\)
Xét: \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
    = \(\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
    = \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)                                                          
    = \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)( có 99 số hạng là 1 )
    = \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(\left(99+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)( đpcm )
Vậy: ... 

5 tháng 11 2016

C  = \(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(C=\frac{\left(101+1\right).101:2}{1+1+...+1+1}\)

\(C=\frac{5151}{51}\)

\(C=101\)

b) \(D=\frac{3737.43-4343.37}{2+4+6+...+100}\)

\(D=\frac{37.101.43-43.101.37}{2+4+6+...+100}\)

\(D=\frac{0}{2+4+6+...+100}\)

\(D=0\)

7 tháng 11 2018

a)C=101

b)d=0