K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2023

Trong tam giác ABC có:

\(cosC=-cos\left(A+B\right)-\dfrac{1}{3}\)

\(\Rightarrow sinC=\sqrt{1-\left(-\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)

Lại có: \(2R=\dfrac{AB}{sinC}\Leftrightarrow R=\dfrac{AB}{2.sinC}=\dfrac{3\sqrt{2}c}{8}\)

$HaNa$

22 tháng 8 2023

cho mình hỏi tại sao cosC lại bằng thế kia vậy ạ

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0

Bạn Ngố ko chỉ kute mà còn biết làm toán nx à !! vui

1 tháng 8 2019

Ta có công thức tính diện tích tam giác khi biết các cạnh của tam giác và bán kính đường tròn ngoại tiếp là: 

\(S=\frac{abc}{4R}\); với R là bán kính đường tròn ngoại tiếp và; a, b, c lần lượt là các cạnh của tam giác.

Bài giải:

A B C H

Ta có tam giác AB=AC =10 cm

Kẻ đường cao BH

=> BH= CH= 12:2 =6cm

Áp dụng định lí Pitago 

=> AH^2 =AC^2-HC^2=10^2-6^2=64

=> AH = 8 cm

=> Diện tích tam giác ABC: S= AH.BC:2=48 (cm^2)

Mặt khác \(S=\frac{AB.AC.BC}{4R}\Rightarrow R=\frac{AB.AC.BC}{4S}=\frac{10.10.12}{4.48}=6,25\left(cm\right)\)

Vậy bán kính đường tròn ngoại tiếp bằng 6,25 cm.

18 tháng 4 2022

Ta sẽ tính `S_[\triangle ABC]` trước

`p = [ AB + AC + BC ] / 2 = [ 14 + 10 + 8 ] / 2 = 16`

 `=> S_[\triangle ABC] = \sqrt{p ( p - AB ) ( p - AC ) ( p - BC ) } = 16\sqrt{6}`

Ta có: `S_[\triangle ABC] = [ AB . AC . BC ] / [ 4R]`

     `=> R = [35\sqrt{6}] / 12`

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

30 tháng 4 2017

Chọn B.

12 tháng 3 2017

Chọn B.

Áp dụng định lí Cosin, ta có

BC2 = AB2 + AC2 - 2AB.AC.cosA

= 32 + 62-2.3.6.cos600 = 27

Ta thấy:  BC2 + AB2 = AC2

Suy ra tam giác ABC vuông tại B

do đó bán kính R = AC : 2 = 3.