Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác ABC có:
\(cosC=-cos\left(A+B\right)-\dfrac{1}{3}\)
\(\Rightarrow sinC=\sqrt{1-\left(-\dfrac{1}{3}\right)^2}=\dfrac{2\sqrt{2}}{3}\)
Lại có: \(2R=\dfrac{AB}{sinC}\Leftrightarrow R=\dfrac{AB}{2.sinC}=\dfrac{3\sqrt{2}c}{8}\)
$HaNa$
Ta có công thức tính diện tích tam giác khi biết các cạnh của tam giác và bán kính đường tròn ngoại tiếp là:
\(S=\frac{abc}{4R}\); với R là bán kính đường tròn ngoại tiếp và; a, b, c lần lượt là các cạnh của tam giác.
Bài giải:
A B C H
Ta có tam giác AB=AC =10 cm
Kẻ đường cao BH
=> BH= CH= 12:2 =6cm
Áp dụng định lí Pitago
=> AH^2 =AC^2-HC^2=10^2-6^2=64
=> AH = 8 cm
=> Diện tích tam giác ABC: S= AH.BC:2=48 (cm^2)
Mặt khác \(S=\frac{AB.AC.BC}{4R}\Rightarrow R=\frac{AB.AC.BC}{4S}=\frac{10.10.12}{4.48}=6,25\left(cm\right)\)
Vậy bán kính đường tròn ngoại tiếp bằng 6,25 cm.
Chọn B.
Áp dụng định lí Cosin, ta có
BC2 = AB2 + AC2 - 2AB.AC.cosA
= 32 + 62-2.3.6.cos600 = 27
Ta thấy: BC2 + AB2 = AC2
Suy ra tam giác ABC vuông tại B
do đó bán kính R = AC : 2 = 3.