Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
\(A=1\cdot3+2\cdot4+...+97\cdot99+98\cdot100\)
\(A=1\cdot\left(1+2\right)+2\cdot\left(1+3\right)+...+97\cdot\left(1+98\right)+98\cdot\left(1+99\right)\)
\(A=\left(1+1\cdot2\right)+\left(2+2\cdot3\right)+...+\left(97+97\cdot98\right)+\left(98+98\cdot99\right)\)
\(A=\left(1+2+...+97+98\right)+\left(1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\right)\)
Đặt \(B=1+2+...+97+98\) ; \(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\). Khi đó: \(A=B+C\)
* Do số các số hạng của tổng B là: ( 98 - 1 ) : 1 + 1 = 98 ( số hạng ) nên:
\(B=1+2+...+97+98=\frac{\left(98+1\right)\cdot98}{2}=99\cdot49=4851\)
* Ta thấy:
\(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+...+97\cdot98\cdot3+98\cdot99\cdot3\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+97\cdot98\cdot\left(99-96\right)+98\cdot99\cdot\left(100-97\right)\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+97\cdot98\cdot99-96\cdot97\cdot98+98\cdot99\cdot100-97\cdot98\cdot99\)
\(\Rightarrow3\cdot C=98\cdot99\cdot100\)
\(\Rightarrow C=\frac{98\cdot99\cdot100}{3}\)
\(\Rightarrow C=98\cdot33\cdot100\)
\(\Rightarrow C=323400\)
Vậy: \(A=B+C=4851+323400=328251\)
A = 2100 - 299 - 298 - ...-2-1
=> 2A = 2101 - 2100 - 299-...-22 - 2
=> 2A-A = 2101 - 2100 - 2100 + 1
A = 2101 - 2100.(1+1) + 1
A = 2101 - 2100. 2+1
A = 2101- 2101+1
A = 1
b) B = 1 - 5 + 52 - 53+...+598-599
=> 5B = 5 - 52+53-54+...+599-5100
=> 5B+B = -5100+1
6B = -5100+1
\(B=\frac{-5^{100}+1}{6}\)
a, \(A=1+2+2^2+....+2^{56}\)
\(\Rightarrow2A=2\left(1+2+2^2+...+2^{56}\right)\)
\(\Rightarrow2A=2+2^2+2^3+....+2^{56}+2^{57}\)
\(\Rightarrow2A-A=2^{57}-1\)
\(\Rightarrow A=2^{57}-1\)
Câu b làm tương tự nha bạn
c, \(C=1-3+3^2-3^3+....+3^{98}-3^{99}\)
\(\Rightarrow3C=3-3^2+3^3-...-3^{98}+3^{99}-3^{100}\)
\(\Rightarrow3C+C=1-3^{100}\)
\(\Rightarrow C=\frac{1-3^{100}}{4}\)
a)\(A=1+2+2^2+...+2^{56}\)
\(2A=2+2^2+2^3+2^4+...+2^{57}\)
\(2A-A=2+2^2+2^3+2^4+...+2^{57}-1-2-2^2-2^3-...-2^{56}\)
\(A=2^{57}-1\)
b)\(B=1+3^1+3^2+...+3^{100}\)
\(3B=3+3^2+3^3+...+3^{101}\)
\(3B-B=3+3^2+3^3+...+3^{101}-1-3-3^2-...-3^{100}\)
\(2B=3^{101}-1\)
\(B=\frac{3^{101}-1}{2}\)
c)\(C=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(3C=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)
\(3C+C=1-3^{100}\)
\(\Rightarrow4C=1-3^{100}\)
\(\Rightarrow C=\frac{1-3^{100}}{4}\)
\(D=2^{100}-2^{99}-....-2^2-2^1-1\)
\(\Rightarrow2D=2^{101}-2^{100}-2^{99}-......-2^2-2^1\)
\(\Rightarrow2D-D=\left(2^{101}-2^{100}-2^{99}-.....-2^2-2^1\right)-\left(2^{100}-2^{99}-....-2^2-2^1-1\right)\)
\(\Rightarrow D=2^{101}-1\)
bài tập về nhà của Nguyễn Thành Đô, o0o I am a studious person o0o tl vô ich
Ta có B = 12 + 22 + 32 + ... + 982
= 1.1 + 2.2 + 3.3 + ... + 98.98
= 1.(2 - 1) + 2.(3 - 1) + 3.(4 - 1) + ... + 98.(99 - 1)
= 1.2 + 2.3 + 3.4 + ... + 98.99 - (1 + 2 + 3 + ... + 98)
= 1.2 + 2.3 + 3.4 + ... + 98.99 - 98.(98 + 1) : 2
= 1.2 + 2.3 + 3.4 + ... + 98.99 - 4851
Khi đó B - A = (1.2 + 2.3 + 3.4 + ... + 98.99 - 4851) - 1.2 + 2.3 + 3.4 + ... + 98.99
= 1.2 + 2.3 + 3.4 + ... + 98.99 - 4851 - 1.2 + 2.3 + 3.4 + ... + 98.99
= -4851
Vậy B - A = - 4851