Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính S = 1.3/3.5 + 2.4/5.7 + 3.5/7.9 + ... + ( n-1)( n+1) / (2n-1)(2n+1) + ... + 1002.1004/2005.2007
\(S=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)
\(\Rightarrow S=\frac{\left(2-1\right)\left(2+1\right)}{\left(2.2-1\right)\left(2.2+1\right)}+\frac{\left(3-1\right)\left(3+1\right)}{\left(3.2-1\right)\left(3.2+1\right)}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)
\(+..+\frac{\left(1003-1\right)\left(1003+1\right)}{\left(1003.2-1\right)\left(1003.2+1\right)}\)
\(\Rightarrow S=\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}\right)+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{3.2-1}-\frac{1}{3.2+1}\right)+...\)
\(+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)+...+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{1003.2-1}-\frac{1}{1003.2+1}\right)\)
\(\Rightarrow S=1002.\frac{1}{4}-1002.\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}+\frac{1}{3.2-1}-...-\frac{1}{1003.2+1}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{2007}\right)\)
\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}.\frac{668}{2007}\)
\(\Rightarrow S=\frac{501}{2}-\frac{27889}{223}\)
\(\Rightarrow S=125,4372197\)
\(\)
bn lên ngạng hoặc và xem câu hỏi tương tự nha!
Nhớ k mk đấy nha!
thanks nhìu!
OK..OK..OK
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(2C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)
Ta có :
\(\frac{2}{1.3}=1-\frac{1}{3}\)
\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)
...............................
\(\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{2n-1}-\frac{1}{2n+1}\)
\(\Rightarrow2C=1-\frac{1}{2n+1}=\frac{2n}{2n+1}\)
\(\Rightarrow C=\frac{n}{2n+1}\)
a) Đặt B= 1/1.3 + 1/3.5 + 1/5.7 + .....+ 1/19.21
Ta có: 2B= 2/1.3 + 2/3.5 + 2/5.7 + ....+ 2/19.21
= 1- 1/3 + 1/3-1/5 + 1/5-1/7 +....+ 1/19-1/21
= 1-1/21 = 20/21
=> B= 20/21 : 2 => B= 10/21
b) Như trên, ta có: 2A= 1- (1/2n + 1) => A=( 1-1/2n+1).1/2
=> A= 1/2- 1/2n+1
=> A< 1/2 ( đpcm )
Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{8.10}\)
\(2A=\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\)
\(2A=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\)
\(2A=1-\frac{1}{10}\)
\(2A=\frac{9}{10}\)
\(A=\frac{9}{10}:2=\frac{9}{20}\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+...+\frac{2}{8.10}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}...+\frac{1}{8}-\frac{1}{10}\right)\)
( chắc chắn có số trái dấu ở phía sau, nên còn lại như sau)
=\(\frac{1}{2}\left(1-\frac{1}{10}\right)=\frac{1}{2}.\frac{9}{10}=\frac{9}{20}\)
Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1)
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1)
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1)
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1)
Vậy A = n/(2n + 1)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)
= \(1-\frac{1}{\left(2n+3\right)}\)
cách làm này ko biết sai hay đúng nên hãy cẩn thận
\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}-\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}\right)-\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{8}{9}-\dfrac{1}{2}\cdot\dfrac{2}{5}\)
\(=\dfrac{4}{9}-\dfrac{1}{5}\)
\(=\dfrac{11}{45}\)