Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(S=\frac{10}{7}+\frac{10}{7^2}+\frac{10}{7^3}+...+\frac{10}{7^{10}}\)
\(\frac{1}{7}S=\frac{10}{7^2}+\frac{10}{7^3}+....+\frac{10}{7^{11}}\)
\(\rightarrow\)\(\left(1-\frac{1}{7}\right).S=\frac{10}{7}-\frac{10}{7^{11}}\)
=> \(S=\frac{10.7^{10}-10}{7^{10}.6}\)
\(A=\frac{7}{10}+\frac{7}{10^2}+...+\frac{7}{10^{100}}\)
\(10A=7+\frac{7}{10}+...+\frac{7}{10^{99}}\)
\(\Rightarrow10A-A=9A=7-\frac{7}{10^{100}}\)
Cho A= \(\frac{10^{2011+5}}{10^{2011}-2}\); B= \(\frac{10^{2011}}{10^{2011}-7}\). Hãy so sánh A và B
\(A=\frac{10^{2011}+5}{10^{2011}-2}=\frac{10^{2011}-2+7}{10^{2011}-2}=1+\frac{7}{10^{2011}-2}\)
\(B=\frac{10^{2011}}{10^{2011}-7}=\frac{10^{2011}-7+7}{10^{2011}-7}=1+\frac{7}{10^{2011}-7}\)
Vì \(\frac{7}{10^{2011}-2}< \frac{7}{10^{2011}-7}\Rightarrow1+\frac{7}{10^{2011}-2}< 1+\frac{7}{10^{2011}-7}\Rightarrow A< B\)
1/10 A =7/10^2+7/10^3+..............+7/10^2020
9/10*A=(7/10+7/10^2+......................+7/10^2019)-(7/10^2+7/10^3+........+7/10^2020)
=7/10-7/10^2020
A=10/9 .(7/10-7/10^2020)
FGHFFGGDJJG