K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AD bằng 12 nha bạn

cách làm : xét 2 tam giác ABD và ACD có 

AB=AC ( Tam giác ABC cân tại A)

góc A1=góc A2 ( AD là p/g góc A)

AD chung

tóm lại tam giác ABD = ACD => BD=CD

mà BD + CD = BC = 10 cm

=> BD = 5 cm

Áp dung định lí pi ta go, ta có 

AB^2 = BD^2 + AD^2

thay số : 13 mũ 2 = 5 mũ 2 + AD^2

=> AD^2 = 144

=> AD = 12

30 tháng 6 2021

Xét tam giác ABC cân tại A, có:

AD là tia phân giác của góc ABC

=>AD đồng thời là đường trung trực=>\(DB=DC=\frac{BC}{2}=5cmv\text{à}g\text{ó}cADB=90^0\)

Xét tam giác ADB vuông tại D,có:

\(AB^2=DB^2+DA^2\)(định lý Pytago)

Hay \(13^2=5^2+DA^2\)

         \(169=25+DA^2\)

         \(DA^2=169-25=144\)

      =>DA= 12cm

17 tháng 4 2016

xét tam giác ABD và tam giác ACD có:

AB=AC

AD(chung)

BAD=CAD(gt)

suy ra tam giác ABD=ACD(c.g.c)

suy ra _ADB=ADC mà ADC+ADB=180 suy ra ADC=ADB=180/2=90

         |

          -DB=DC=1/2BC=5cm

vì AD là 1 đường trung tuyến của tam giác ABC, G là trọng tâm của tam giác ABC suy ra GD=1/3AD

ta có:\(AD^2=AB^2-BD^2=13^2-5^2=169-25=144\) 

\(AD=\sqrt{144}=12\left(cm\right)\)

GD=1/3AD=1/3x12=4(cm)

a: XétΔADB và ΔADC có

AD chung

DB=DC

AB=AC

Do đó: ΔABD=ΔACD

b: ta có: ΔABC cân tại A

mà AD là trung tuyến

nên AD là đường cao

c: BD=BC/2=5cm

nên AD=12cm

2 tháng 3 2018

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!






!!!!!!!!!!!!!!!!111

2 tháng 3 2018

a, xét tam giác tam giác ADB và am giác ADC:

Ab=ac (gt)

ad chung

góc adc = góc adb=90 độ (gt)

3 tháng 5 2017

a, Xét tam giác ABD và tam giác ACD là tam giác caan ta có :

AB=AC( gt)

Góc BAD= góc CAD( tia phân giác AD của góc A)

AD là cạnh chung

Suy ra tam giác ABD= tam giác ACD(c-g-c)

CÒN CÂU B và D để sau nhé đang bận***

8 tháng 4 2017

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

8 tháng 4 2017

uhuhuhu sợ bài này lắm rồi !