Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Tính
A= (1-1/22).(1-1/32)...(1-1/1002)
B= -1/1.2-1/2.3-1/3.4-...-1/100.101
C= 1.2+2.3+3.4+...+100.101
Lời giải :
Đặt S=1.2+2.3+3.4+4.5+…+99.100+100.101
3S=1.2.3+2.3.3+3.4.3+4.5.3+…+99.100.3+100.101.3
=1.2(3−0)+2.3(4−1)+3.4(5−2)+4.5(6−3)+…+99.100(101−98)+100.101(102−99)
=0.1.2-1.2.3+1.2.3-2.3.4+...+99.100.101-100.101.102
=100.101.102
S=100.101.34=343400
1.Tính
a) Ta có:
A=(1-1/22).(1-1/32)...(1-1/1002)
=>A=3/22.8/32.....9999/1002
=>A=(1.3/2.2).(2.4/3.3).....(99.101/100.100)
=>A=(1.2.3.....99/2.3.4.....100).(3.4.5.....101/2.3.4.....100)
=>A=1/100.101/2
=>A=101/200
b) Ta có:
B=-1/1.2-1/2.3-1/3.4-...-1/100.101
=>B=-(1/1.2+1/2.3+1/3.4+...+1/100.101)
=>B=-(1-1/2+1/2-1/3+1/3-1/4+...+1/100-1/101)
=>B=-(1-1/101)
=>B=-100/101
c) Ta có:
C=1.2+2.3+3.4+...+100.101
=>3C=1.2.3+2.3.3+3.4.3+...+100.101.3
=>3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+100.101.(102-99)
=>3C=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-3.4.5+...+100.101.102
=>3C=100.101.102
=>3C=1030200
=>C=343400
Chúc bạn hok tốt nhé >:)!!!!!
A = 1.2 + 2.3 + 3.4 + ...... + 100.101
3A = 1.2.3 + 2.3.3 + 3.4.3 + ...... + 100.101.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ..... + 100.101.(102 - 99)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ...... + 100.101.102 - 99.100.101
3A = 100.101.102
A = 100.101.34
A = 343400
Ta có 3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+100.101.102-99.100.101
\(\Rightarrow\)3A=100.101.102
\(\Rightarrow\)A=343400
B=1.2+1+2.3+1+3.4+1+...+100.101+100
\(\Rightarrow\)B=1.2+2.3+3.4+...+100.101+[1+2+3+..+100]
Mặt khác 1.2+2.3+3.4+4.5+...+100.101=A
\(\Rightarrow\)B=343400+101.100:2=348450
A=1.2+2.3+3.4+.....+100.101
3A=1.2.3+2.3.3+3.4.3+..+100.101.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)......+100.101.(102-99)
3A=1.2.3+2.3.4-2.3.1+3.4.5-3.4.2+....+99.100.101-100.101.102
3A=100.101.102
3A=\(\frac{100.101.101}{3}\)
Ta có : A = 1.2 + 2.3 + 3.4 + ..... + 100.101
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 100.101.102
=> 3A = 100.101.102
=> A = 100.101.102/3
=> A = 343400
A = 1.2 + 2.3 + 3.4 + ... + 100.101
3A = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 100.101.(102-99)
3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 100.101.102 - 99.100.101
3A = (1.2.3 + 2.3.4 + 3.4.5 + ... + 100.101.102) - (0.1.2 + 1.2.3 + 2.3.4 + ... + 99.100.101)
3A = 100.101.102 - 0.1.2
3A = 100.101.102
A = 100.101.34
A = 343400
Ta có :
A = 1.2+2.3+3.4+4.5+...+100.101
B = 1.3+2.4+3.5+4.6+....+100.102
=> B - A = ( 1.2+2.3+3.4+4.5+...+100.101) - (1.3+2.4+3.5+4.6+...+100.102)
=> B - A = 1.2+2.3+3.4+4.5+...+100.101-1.3-2.4-3.5-4.6-....-100.102
=> B - A = 1.2+(2.3-1.3)+(3.4-2.4)+(4.5-3.5)+...+(100.101-99.101)-100.102
=> B - A = 2+3+4+5+...+101-10200
=> B - A = (2+101)+(3+100)+...+(51+52)-10200
=> B - A = 103+103+103+....+103-10200 ( 50 SỐ 103 )
=> B - A = 103.50-10200
=> B - A = 5150-10200
=> B - A = -5050
Cách làm đúng nhưng bạn lấy nhầm A-B thay vì B-A rồi, kết quả là 5050 mới đúng
Ta có : A = 1.2 + 2.3 + 3.4 + ...... + 100.101
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 100.101.102
=> 3A = 100.101.102
=> A = 100.101.102/3
=> A = 343400
Ta có: \(A=1.2+2.3+3.4+...+100.101\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+100.101.3\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+100.101\left(102-99\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+100.101.102-99.100.101\)
\(\Rightarrow3A=\left(1.2.3-1.2.3\right)+...+\left(99.100.101-99.100.101\right)+100.101.102\)
\(\Rightarrow3A=\) \(100.101.102\)
\(\Rightarrow A=\dfrac{100.101.102}{3}=343400\)
Vậy \(A=343400.\)
A = 1.2+2.3+3.4+.....+100.101
3A = 1.2.3+2.3.4+3.4.3+...........+99.100.3
3A= 1.2.(3-0)+ 2.3.(4-1)+ 3.4.(5-2)....... . 99.100.(101-98)
3A=(1.2.3+2.3.4+3.4.5+......+99.100.101)-(0.1.2 + 1.2.3 + 2.3.4 +........+98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A = 999900
=> A = 999900 : 3
=> A = 333300