Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1/3 + 1/3^2 + ... + 1/3^8
3A= 3. (1/3+ 1/3^2+ ... + 1/3^8)
3A=1+ 1/3 + 1/3^2+ ... +1/3^7
=> 3A - A= (1 + 1/3 + 1/3^2 + ... + 1/3^7) - (1/3 + 1/3^2+ ... + 1/3^8)
=> 2A= 1 - 1/ 3^8
2A= 6560/6561
A= 6560/6561 : 2
A= 3280/6561
\(a.10-\left[12-\left(-9-1\right)\right]\)
\(=10-12+9+1\)
\(=8\)
\(a,10-\left[12-\left(-9-1\right)\right]\)
\(=10-\left[12+9+1\right]\)
\(=10-22=-12\)
\(b,271-\left[\left(-43\right)+27-\left(-17\right)\right]\)
\(=271-\left[-43+27+17\right]\)
\(=271-\left[1\right]\)
\(=270\)
\(c,-144-\left[29-144-144\right]\)
\(=-144-29+144+144\)
\(=144-29=115\)
\(\dfrac{-1}{9}.\dfrac{-3}{5}+\dfrac{5}{-6}.\dfrac{-3}{5}-\dfrac{7}{2}.\dfrac{3}{5}\)
\(=\dfrac{3}{5}.\left(\dfrac{1}{9}+\dfrac{5}{6}-\dfrac{7}{2}\right)\)
\(=\dfrac{3}{5}.\left(\dfrac{2}{18}+\dfrac{15}{18}-\dfrac{63}{18}\right)\)
\(=\dfrac{3}{5}.\left(-\dfrac{23}{9}\right)\)
\(=-\dfrac{69}{45}\)
\(2^{x+3}.2=2^2.3+52\)
\(=>2^{x+3}.2=64\)
\(=>2^{x+3}=64:2\)
\(=>2^{x+3}=32\)
\(=>2^{x+3}=2^5\)
=>x+3=5
=>x=5-3
=>x=2
Vậy ...........
2x + 3 . 2 = 22 . 3 + 52
2x + 3 . 2 = 4 . 3 + 52
2x + 3 . 2 = 12 + 52
2x + 3 . 2 = 64
2x + 3 = 64 : 2
2x + 3 = 32
2x + 3 = 25
x + 3 = 5
x = 5 - 3
x = 2
Vậy x = 2
Lời giải:
Vì $a,b$ là số tự nhiên nên $2a+1,b-2$ là số nguyên
$(2a+1)(b-2)=12$ nên $2a+1$ là ước của $12$
Mà $2a+1$ là số tự nhiên lẻ nên $2a+1\in\left\{1;3\right\}$
Nếu $2a+1=1$ thì $b-2=12:1=12$
$\Rightarrow a=0; b=14$ (thỏa mãn)
Nếu $2a+1=3$ thì $b-2=12:3=4$
$\Rightarrow a=1; b=6$ (thỏa mãn)
a: \(=\dfrac{-39+19+10}{12}=\dfrac{-10}{12}=\dfrac{-5}{6}\)
b: \(=\dfrac{2^{30}\cdot3^{16}\cdot7-2^{34}\cdot3^{15}}{2^{28}\cdot3^{21}-2^{28}\cdot3^{17}}\)
\(=\dfrac{2^{30}\cdot3^{15}\left(3\cdot7-2^4\right)}{2^{28}\cdot3^{17}\left(3^4-1\right)}=\dfrac{2^2}{3^2}\cdot\dfrac{21-16}{80}=\dfrac{4}{9}\cdot\dfrac{5}{80}\)
\(=\dfrac{20}{720}=\dfrac{1}{36}\)
A = 1 + 2 + 2² + 2³ + ... + 2²⁰²³
⇒ 2A = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴
⇒ A = 2A - A
= (2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³ + ... + 2²⁰²³)
= 2²⁰²⁴ - 1
\(A=1+2+2^2+...+2^{2023}\)
\(2\cdot A=2\cdot\left(1+2+2^2+...+2^{2023}\right)\)
\(2A=2+2^2+2^3+....+2^{2024}\)
\(2A-A=\left(2+2^2+...+2^{2024}\right)-\left(1+2+2^2+...+2^{2023}\right)\)
\(A=2+2^2+2^3+....+2^{2024}-1-2-2^2-...-2^{2023}\)
\(A=2^{2024}-1\)