Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{2013\cdot2015}\right)\)
\(=\frac{4}{1\cdot3}\cdot\frac{9}{2\cdot4}\cdot\frac{16}{3\cdot5}\cdot...\cdot\frac{4056196}{2013\cdot2015}\)
\(=\frac{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2014\cdot2014\right)}{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2013\cdot2015\right)}\)
\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2014\right)}{\left(1\cdot2\cdot3\cdot...\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2015\right)}\)
\(=\frac{2014\cdot2}{1\cdot2015}\)
\(=\frac{4028}{2015}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{2013.2015}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2014}{2015}=\frac{1007}{2015}\)
Vậy A=1007/2015
\(2A=2\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2013.2015}\right)\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(2A=1-\frac{1}{2015}\)
\(A=\frac{2014}{2015}:2\)
\(A=\frac{1007}{2015}\)
1/1.3+1/3.5+...+1/2013.2015
=1/2.(1/1-1/3+1/3-1/5+...+1/2013-1/2015)
=1/2.(1/1-1/2015)
=1/2.2014/2015
=1007/2015
A=1/1.3+1/3.5+1/5.7+...+1/2013.2015
2A=2.(1/1.3+1/3.5+1/5.7+...+1/2013.2015)
=2/1.3+2/3.5+2/5.7+...+2/2013.2015
=1-1/3+1/5-1/7+1/7-1/9+...+1/2013-1/2015
=1-1/2015
=2014/2015
=>2A=2014/2015=>A=1007/2015
a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)
b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)
\(B=\frac{1}{1\times3}+\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{2013\times2015}\\
2B=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{2013\times2015}\\
2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\\2B=1-\frac{1}{2015}=\frac{2014}{2015}\\
\Rightarrow B=\frac{2014}{2015}
\div2=\frac{1007}{2015}\)
A = 1.3 + 2.4 + 3.5 + 4.6 + 5.7 + .. + 2013.2015 = [1.3 + 3.5+..+2013.2015] + [2.4 + 4.6 + .. + 2012.2014] = X + Y
X = 1.3 + 3.5 + 5.7 + .. + 2013.2015
X.6 = 1.3.﴾5 ‐ ﴾‐1﴿﴿ + 3.5.﴾7 ‐ 1﴿ + 5.7.﴾9‐3﴿ + 7.9.﴾11‐5﴿ + .. + 2011.2013.﴾2015‐2009﴿ + 2013.2015.﴾2017‐2011﴿
= ‐﴾‐1﴿.1.3 + 1.3.5 + 3.5.7 ‐ 1.3.5 + 5.7.9 ‐ 3.5.7 + .... = 1.3 + 2013.2015.2017
=> X = 1/6*﴾3 + 2013.2015.2017﴿ = 1363557553
tương tự Y = 2.4 + 4.6 + .. + 2012.2014
Y.6 = 2.4.6 + 4.6.﴾8‐2﴿ +... + 2012.2014.﴾2016‐2010﴿ = 2012.2014.2016
=> Y = 2012.2014.2016/6 = 1361528448
=> A = X + Y = 2725086001
lâu ko làm nên sai hay đúng thì mình ko biết nữa