Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{3}{4}x\frac{8}{9}x\frac{15}{16}x...x\frac{9999}{10000}\)
\(C=\frac{3}{4}x\frac{4x2}{3x3}x\frac{3x5}{2x8}x...x\frac{99x101}{100x100}\)
\(C=...\) ( Tự làm tiếp )
\(E=1\frac{1}{3}x1\frac{1}{8}x1\frac{1}{15}x1\frac{1}{24}x...x1\frac{1}{99}\)
\(E=\frac{4}{3}x\frac{9}{8}x\frac{16}{15}x\frac{25}{24}x...x\frac{100}{99}\)
\(E=....\)( tương tự câu C )
1-1/2+1/3-1/4+......-1/1000
=(1+1/3+1/5+......+1/999)-(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+1/4+.....+1/1000)-2(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+.........+1/1000)-(1+1/2+.....+1/500)
=1/501 +1/502+1/503+.....+1/1000 ;
mat khác:
500-500/501-501/502-.....-999/1000
=(1-500/501)+(1-501/502)+.....+(1-999/1000)=1/501+1/502+....+1/1000
=>D=1
g) \(\frac{1489.1490+2978}{1492.1491-2984}\)
\(=\frac{1489.1491-1489+2978}{1492.1491-2984}\)
\(=\frac{1489.1491+1489}{1492.1491-2984}\)
\(=\frac{1492.1491-3.1491+1489}{1492.1491-2984}\)
\(=\frac{1492.1491-2984}{1492.1491-2984}=1\)
h) \(6.134.2+12.163+4.3.203=12.134+12.163+12.203\)
\(=12\left(134+163+203\right)=12.500=12.50.10\)
\(1+3+5+...+99=\left[\frac{99-1}{2}+1\right].\frac{\left(99+1\right)}{2}=50.50=\)
=> \(1+2+3+4+...+99-500=50.50-50.10=50.\left(50-10\right)=50.40\)
=> \(\frac{6.134.2+12.163+4.203.3}{1+3+5+...+97+99-500}=\frac{12.50.10}{40.50}=\frac{120}{40}=3\)
\(A=5\)
Dựa vào câu hỏi trên ta có dãy số 1+3+7+...........................+97+99