K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

\(2A=1+\frac{1}{2}+\frac{1}{4}+....+\frac{1}{512}\Rightarrow2A-A=1-\frac{1}{1024}=\frac{1023}{1024}\)

19 tháng 6 2019

\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)

\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\)

\(2A-A=\left[1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{512}\right]-\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\right]\)

\(A=1-\frac{1}{2014}=\frac{2013}{2014}\)

2 tháng 2 2020

Ta có : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)

Đặ A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)(1)

=> 2A = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)(2)

Lấy (2) trừ (1) theo vế ta có : 

2A - A = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

=> A = \(1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{20}}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)

\(\Leftrightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^9}\)

\(\Rightarrow2A-A=1-\frac{1}{2^{10}}=\frac{1023}{1024}\)

10 tháng 5 2017

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}=\frac{2^{10}-1}{2^{10}}=\frac{1023}{1024}\)

BẤM ĐÚNG NHÉ

8 tháng 6 2017

1023/1024 nhé bạn

12 tháng 8 2016

\(A=\left(1-\frac{1}{2^1}\right)+\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{2^3}\right)+...+\left(1-\frac{1}{2^9}\right)+\left(1-\frac{1}{2^{10}}\right)\)

\(A=\left(1+1+1+...+1+1\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

                        10 số 1

\(A=10-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}+\frac{1}{2^9}\)

\(2B-B=1-\frac{1}{2^{10}}=B\)

=> \(A=10-\left(1-\frac{1}{2^{10}}\right)\)

=> \(A=10-1+\frac{1}{2^{10}}\)

=> \(A=9\frac{1}{1024}\)

25 tháng 9 2016

\(\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}=\frac{1}{1024}\)dùng phương pháp loại trừ 

14 tháng 8 2016

b) Đặt B = A : C ta có:

\(A=\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3}{42}+\frac{5^3}{56}+\frac{5^3}{72}+\frac{5^3}{90}\)

\(A=5^3.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(A=5^3.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

\(A=5^3.\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(A=\frac{5^3.2}{5}\)

\(A=5^2.2\)

\(\Rightarrow A=50\)

\(C=\frac{1124.2247-1123}{1124+1123.2247}\)

\(C=\frac{\left(1123+1\right).2274-1123}{1123.2247+1124}\)

\(C=\frac{1123.2247-2247-1123}{1123.2247+1124}\)

\(C=\frac{1123.2247+1124}{1123.2247+1124}=1\)

\(\Rightarrow B=50:1=50\) 

Vậy B = 50

 

14 tháng 8 2016

cam on bn nhieu

13 tháng 8 2018

Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512

2A = 1/2 x 2 + 1/4 x 2 + 1/8 x 2 + 1/16 x 2 + 1/32 x 2 + 1/64 x 2 + 1/128 x 2 + 1/256 x 2 + 1/512 x 2

2A = 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256

2A - A = ( 1 + 1/2 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 ) - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 )

A = 1 - 1/512

A = 511/512