Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
điều kiện xác định \(x\ne0\)
ta có : \(\dfrac{x+1}{x^2+2x+4}-\dfrac{x-2}{x^2-2x+4}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-2x+4\right)-\left(x-2\right)\left(x^2+2x+4\right)}{\left(x^2+2x+4\right)\left(x^2-2x+4\right)}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)
\(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-\left(x^3+2x^2+4x-2x^2-4x-8\right)}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{x^3-2x^2+4x+x^2-2x+4-x^3-2x^2-4x+2x^2+4x+8}{x^4-2x^3+4x^2+2x^3-4x^2+8x+4x^2-8x+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\) \(\Leftrightarrow\dfrac{-x^2+2x+12}{x^4+4x^2+16}=\dfrac{6}{x\left(x^4+4x^2+16\right)}\)\(\Leftrightarrow-x^2+2x+12=\dfrac{6}{x}\Leftrightarrow x\left(-x^2+2x+12\right)=6\)
\(\Leftrightarrow-x^3+2x^2+12x=6\Leftrightarrow-x^3+2x^2+12x-6=0\)
tới đây bn bấm máy tính nha
a) (x - 1)3 + (2 - x)(4 + 2x + x2) + 3x(x + 2) = 16
x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x - 16 = 0
9x - 9 = 0
9x = 9
x = 1
Vậy x ∈ {1}
b) ( x + 2)(x2 - 2x + 4) - x(x2 - 2) = 16
x3 + 8 - x3 + 2x - 16 = 0
2x - 8 = 0
2x = 8
x = 4
Vậy x ∈ {4}
c) x(x - 5)(x + 5) - (x + 2)(x2 - 2x + 4) = 17
x3 - 25x - x3 - 8 - 17 = 0
-25x - 25 = 0
-25x = 25
x = -1
Vậy x ∈ {1}
d) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 15
x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 - 15 = 0
45x - 6 = 0
45x = 6
x = \(\frac{2}{15}\)
Vậy x ∈ {\(\frac{2}{15}\)}
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
Mấy bài dài dài kia tí mình làm cho :)
( x - 1 )3 - x( x - 2 )2 + 1
= x3 - 3x2 + 3x - 1 - x( x2 - 4x + 4 ) + 1
= x3 - 3x2 + 3x - x3 + 4x2 - 4x
= x2 - x = x( x - 1 )
2x( 3x + 2 ) - 3x( 2x + 3 )
= 6x2 + 4x - 6x2 - 9x
= -5x
( x + 2 )3 + ( x - 3 )2 - x2( x + 5 )
= x3 + 6x2 + 12x + 8 + x2 - 6x + 9 - x3 - 5x2
= 2x2 + 6x + 17
( 2x + 3 )( x - 5 ) + 2x( 3 - x ) + x - 10
= 2x2 - 7x - 15 + 6x - 2x2 + x - 10
= -25
( x + 5 )( x2 - 5x + 25 ) - x( x - 4 )2 + 16x
= x3 + 53 - x( x2 - 8x + 16 ) + 16x
= x3 + 125 - x3 + 8x2 - 16x + 16
= 8x2 + 125
( -x - 2 )3 + ( 2x - 4 )( x2 + 2x + 4 ) - x2( x - 6 )
= -x3 - 6x2 - 12x - 8 + 2x3 - 16 - x3 + 6x2
= -12x - 24 = -12( x + 2 )
Tương tự ...
a, \(\left(x-1\right)^3-x\left(x-2\right)^2+1=x^3-3x^2+3x-1-x^3+4x^2-4x+1=x^2-x\)
b, \(2x\left(3x+2\right)-3x\left(2x+3\right)=6x^2+4x-6x^2-9x=-5x\)
c, \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)=x^3+6x^2+12x+8+x^2+6x+9-x^3-5x^2=2x^2+18x+17\)
a)\(\frac{2x}{x+5}+\frac{10}{x+5}=\frac{2x+10}{x+5}=\frac{2\left(x+5\right)}{x+5}=2\)
b)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{x^2-4}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8x+16}{\left(x-2\right)\left(x+2\right)}\)\(=\frac{8\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{8}{x-2}\)
a) \(\frac{2x}{x+5}+\frac{10}{x+5}\)=\(\frac{2x+10}{x+5}\)=\(\frac{2\left(x+5\right)}{x+5}\)=\(2\)
b)\(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{x^2-4}\)=\(\frac{x+2}{x-2}-\frac{x-2}{x+2}+\frac{16}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{\left(x+2-x+2\right)\left(x+2+x-2\right)+16}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{4\times2x+16}{\left(x-2\right)\left(x+2\right)}\)
=\(\frac{8x+16}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{8}{x-2}\)