Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
Cách 2: Ta có
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
chúc bạn học tốt
A = 1.2 + 2.3 + 3.4 +...+ n.(n+1)
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ...+ n.(n+1).3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ...+ n.(n+1).[(n+2)-(n-1)]
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ...+ n.(n+1).(n+2) - (n-1).n.(n+1)
3A = n.(n+1).(n+2)
A = n.(n+1).(n+2)/3
3A = 1.2.( 3 -0) + 2.3.(4-1) + 3.4.(5-2) +....+ n(n+1) [ (n+2) - ( n-1)]
= 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ....+ n(n+1)(n+2) - (n-1)n(n+1)
= n(n+1)(n+2)
A =n(n+1)(n+2) : 3
Ta có : A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
\(\Rightarrow\)3A = 1.2.(3-0)+2.3.(4-1)+3.4.(5-2).....n.(n+1).[(n+2)-(n-1)]
\(\Rightarrow\)3A= 1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+n.(n+1)(n+2)-(n-1)n(n+1)
\(\Rightarrow\)3A= (1.2.3-1.2.3)+(2.3.4-2.3.4)+....+[(n-1).n.(n+1)-(n-1)n(n+1)]+n.(n+1)(n+2)
\(\Rightarrow\)3A=n.(n+1)(n+2)
\(\Rightarrow\)A=\(\frac{\text{n.(n+1)(n+2)}}{3}\)
ta thấy mỗi hạng tử của tổng trên là tích của hai số tự nhiên liên tiếp , khi đó:
gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2
a2=2.3=>3a2=2.3.3=>3a2=2.3.4-1.2.3
a3=3.4=>3a3=3.3.4=>3a3=3.4.5-2.3.4
.......
an-1=(n-1)n=>3an-1=3(n-1)n=>3an-1=(n-1)n(n+1)-(n-2)(n-1)n
an=n(n+1)=>3an=3n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)
cộng các vế đẳng thức trên ta có:
3a1+3a2+...+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+...+(n-1)n(n+1)-(n-2)(n-1)n+n(n+1)(n+2)-(n-1)n(n+1)
=>3(a1+a2+...+an-1+an)=n(n+1)(n+2)
mà A=a1+a2+...+an-1+an nên
\(A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
cách mình đúng;
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n +1)3
= 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...+ n(n + 1)((n + 2) - (n -1))
= 1.2.3 + 2.3.4 - 2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
= n(n + 1)(n + 2)
=> S = n(n + 1)(n + 2)/3