Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x......x\left(1-\frac{1}{2013}\right)x\left(1-\frac{1}{2014}\right)\)
\(A=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...............x\frac{2012}{2013}x\frac{2013}{2014}\)
\(A=\frac{1}{2014}\)
\(\left[1-\frac{1}{2}\right]\left[1-\frac{1}{3}\right]...\left[1-\frac{1}{2014}\right]\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}...\cdot\frac{2013}{2014}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2013}{2\cdot3\cdot4\cdot5\cdot...\cdot2014}=\frac{1}{2014}\)
A=1/2*2/3*3/4*...*2012/2013*2013/2014
Ta gạch bỏ các chữ số giống nhau còn lại 1/2014
Vậy A= 1/2014
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
a) 20,8 x 45 + 0,37 x 15 + 20,8 x 55 x 0,63
= 20,8 x ( 45 + 55 x 0,63 ) + 0,37 x 15
= 20,8 x ( 45 + 34,65 ) + 5,55
= 20,8 x 79,65 + 5,55
= 1656,72 + 5,55
= 1662,27
b) ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x ( 1 + 1/3 - 1 và 1/3 )
= ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x [( 1 - 1 ) + ( 1/3 - 1/3 ) ]
= ( 2013 x 2014 + 2014 x 2015 + 2015 x 2016 ) x 0
= 0