K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

Vì \(\left(x-2\right)^4\ge0;\left(2y-1\right)^{2004}\ge0\forall x;y\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2004}\ge0\forall x;y\)

Mà đề lại cho \(\left(x-2\right)^4+\left(2y-1\right)^{2004}\le0\Rightarrow\left(x-2\right)^4=0;\left(2y-1\right)^{2004}=0\)

\(\Rightarrow x=2;y=\frac{1}{2}\) Thay vào đa thức \(21x^{2y}+4xy^2\) ta được :

\(21.2^{2.\frac{1}{2}}+4.2.\left(\frac{1}{2}\right)^2=21.2+8.\frac{1}{4}=42+2=44\)

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

27 tháng 8 2017

bạn nói rõ 1 chút được ko

25 tháng 10 2019

bựa trên lớp mi đưa ra rồi

NV
25 tháng 10 2019

Ý tưởng chung của loại hệ này là xét \(x=0\) hoặc \(y=0\) có phải nghiệm hay ko

Sau đó với trường hợp \(x;y\ne0\) thì đặt \(y=kx\) hoặc \(x=ky\) với \(k\ne0\) và thay vào là được

25 tháng 6 2020

giải hpt: \(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)

Cộng hai vế lại với nhau ta có: 

\(4x^2-4xy^2+y^4+x^2-4x+4=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-y^2=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y^2=4\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=2;y=2\left(tm\right)\\x=2;y=-2\end{cases}}\)

Thay x,y vào pt và tính

=> x=2 và y=2 thỏa mãn 

=>(x;y)=(2;2) (t/m)

25 tháng 6 2020

@Linh: Làm nhầm rồi 

HPT\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)

Cộng vế với vế của hai phương trình, ta được:

\(HPT\Leftrightarrow5x^2-4xy^2+y^2-4x+4=0\)

\(\Leftrightarrow\left(4x^2-4xy^2+y^2\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)

Vậy \(\left(x;y\right)=\left(2;4\right)\)
 

28 tháng 10 2020

Ta có: \(4x^2+2y^2-4xy+4+\sqrt{\left(x+y+z\right)^2}=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+y^2+4+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|=-4\)

Mà \(VT\ge0\left(\forall x,y,z\right)\) => vô lý

=> PT vô nghiệm

28 tháng 10 2020

\(4x^2+2y^2-4xy+4+\sqrt{\left(x+y+z\right)^2}=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+y^2+4+\left|x+y+z\right|=0\)

\(\Leftrightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|+4=0\)(1)

Vì \(\left(2x-y\right)^2\ge0\)\(y^2\ge0\)\(\left|x+y+z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left(2x-y\right)^2+y^2+\left|x+y+z\right|+4\ge4\forall x,y,z\)(2)

Từ (1) và (2) \(\Rightarrow\)Vô lý 

Vậy không tìm được giá trị của x, y, z thỏa mãn đề bài

10 tháng 5 2018

Ta có : \(4x^2+2y^2+2z^2-4xy+2yz-6y-10z+34=0\)

\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Leftrightarrow\left(y+z-2x\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y+z-2x=0\\y=3\\z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Suy ra \(M=2\)

4 tháng 10 2019

Ta có : 4x^2+2y^2+2z^2-4xy+2yz-6y-10z+34=04x2+2y2+2z2−4xy+2yz−6y−10z+34=0

\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0⇔(4x2+y2+z2−4xy−4xz+2yz)+(y2−6y+9)+(z2−10z+25)=0

\Leftrightarrow\left(y+z-2x\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0⇔(y+z−2x)2+(y−3)2+(z−5)2=0

\(\Leftrightarrow\hept{\begin{cases}y+z-2x=0\\y=3\\z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)

Suy ra M=2M=2

NV
1 tháng 6 2020

Cộng vế với vế:

\(4x^2-4xy^2+y^4+x^2-4x+4=0\)

\(\Leftrightarrow\left(2x-y^2\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y^2=0\\x-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y^2=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\end{matrix}\right.\) thay vào pt đầu chỉ có \(\left(x;y\right)=\left(2;2\right)\) thỏa mãn

27 tháng 7 2017

Từ \(9x^2+4y^2=20xy\Rightarrow9x^2-20xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\)\(\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=\frac{2}{9}y\end{cases}}\)

Với \(x=2y\Rightarrow A=\frac{3.2y+2y}{3.2y-2y}=\frac{8y}{4y}=2\)

Với \(x=\frac{2}{9}y\Rightarrow A=\frac{3.\frac{2}{9}y+2y}{3.\frac{2}{9}y-2y}=\frac{\frac{8}{3}y}{-\frac{4}{3}y}=-2\)

30 tháng 7 2017

Từ \(9x^2+4y^2=20xy\Rightarrow9x^2-20xy+4y^2=0\)

\(\Leftrightarrow9x\left(x-2y\right)-2y\left(x-2y\right)=0\Leftrightarrow\left(x-2y\right)\left(9x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=\frac{2}{9}y\end{cases}}\)

Với \(x=2y\Rightarrow A=\frac{3\cdot2y+2y}{3\cdot2y-2y}=\frac{8y}{4y}=2\)

Với \(x=\frac{2}{9}y\Rightarrow A=\frac{3\cdot\frac{2}{9}y+2y}{3\cdot\frac{2}{9}y-2y}=\frac{\frac{8}{3}y}{-\frac{4}{3}y}=-2\)