Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x-y-xy=0\)
\(\Leftrightarrow x-y.\left(1+x\right)=0\)
\(\Leftrightarrow\left(1+x\right)-y.\left(1+x\right)=0+1\)
\(\Leftrightarrow\left(1+x\right).\left(1-y\right)=1\)
Bạn tìm x,y rùi tính \(\frac{1}{x}-\frac{1}{y}\)nhé
1/ Ta có \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
=> \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)thì \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
2 \(xy=\frac{x}{y}\Rightarrow y=\frac{x}{xy}=\frac{1}{y}\Rightarrow y^2=1\Rightarrow y=+-1\)
nếu \(y=1\Rightarrow x+y=xy=x+1=x\Rightarrow x-x=-1\Rightarrow0=-1\)vô lí (loại)
\(\Rightarrow y=-1\Rightarrow x+y=xy=x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)(thỏa mãn)
vậy \(x=\frac{1}{2};y=-1\)
x2=yz => \(\frac{x}{y}=\frac{z}{x}\)
\(z^2=xy\Rightarrow\frac{z}{x}=\frac{y}{z}\)
\(\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)
áp dụng ... ta có
\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)
\(\frac{x}{y}=1\Rightarrow x=y\)
\(\frac{z}{x}=1\Rightarrow z=x\)
=>x=y=z
Ta có x2=yz nên x/y=z/x(1)
y2=xz nên x/y=y/z(2)
z2=xy nên z/x=y/z(3)
Từ 1,2,3 suy ra x/y=z/x=y/z(4)
áp dụng t/c dãy tỉ số bằng nhau vào 4 có
x/y=z/x=y/z=x+y+z/x+y+z
vì x, y,z khác 0 nên x+y+z Khác 0
suy ra x+y+z/z+x+y=1
suy ra x/y=z/x=y/z=1
suy ra x=y; x=z; y=z
C2 :
Từ x2=yz⇒xz=yx(1)
Từ y2=xz⇒yx=zy(2)
Từ z2=xy⇒zy=xz(3)
Từ (1) , (2) và (3) ⇒xz=yx=zy
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
xz=yx=zy=x+y+zz+x+y=1
Khi đó : xz=1⇒x=z((
yx=1⇒y=x
zy=1⇒z=y
T
Ta có: x−y1=x+y7=(x−y)+(x+y)1+7=2x8=x4x−y1=x+y7=(x−y)+(x+y)1+7=2x8=x4
xy=xy24⇔6x24=xy24xy=xy24⇔6x24=xy24
⇒6x=xy⇒6x=xy
⇒y=6⇒y=6
x−61=x+67x−61=x+67
⇔7.(x−6)=x+6⇔7.(x−6)=x+6
⇔7x−42=x+6⇔7x−42=x+6
⇔7x−x=6+42⇔7x−x=6+42
⇔6x=48⇔6x=48
⇒x=8⇒x=8
Vậy x=8;y=6
Đặt x = 4k
y = 7k
=> 4k.7k = 112
=> 28.k^2 = 112
=> k^2 = 112 : 28 = 4
=> k = 2
=> x = 4.2 = 8
y = 7.2 = 14
\(xy=x-y\Rightarrow xy-x+y=0\Rightarrow\left(xy-x\right)+\left(y-1\right)=-1\)
\(\Rightarrow x\left(y-1\right)+\left(y-1\right)=-1\Rightarrow\left(x+1\right)\left(y-1\right)=-1\)
=> -1 chia hết cho x+1 và y-1
=> x+1 và y-1 là ước của -1
Nếu x+1 = 1=> x= 0 thì y-1 = -1 => y =0 => (x;y)= (0;0) (loại )
vì x, y khác 0 (gt)
Nếu x+1 = -1 => x = -2 thì y-1 = 1 => y= 2 => (x;y) (-2;2) ( thỏa mãn )
Khi đó \(\frac{1}{x}-\frac{1}{y}=\frac{1}{-2}-\frac{1}{2}=-1\)