Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+...+1-\frac{1}{90}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\)
Từ 2 đến 9 có : ( 9 - 2 ) / 1 + 1 = 8 ( số hạng ) => có 8 số 1
\(\Rightarrow8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=8-\frac{2}{5}=\frac{38}{5}\)
b) \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{109}{110}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+...+1-\frac{1}{110}\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{10\cdot11}\right)\)
Từ 1 đến 10 có : ( 10 - 1 ) / 1 + 1 = 10 ( số hạng ) => có 10 số 1
\(\Rightarrow10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=10-\left(1-\frac{1}{11}\right)\)
\(=10-\frac{10}{11}=\frac{100}{11}\)
đề thi vào trường chuyên nhe các bạn ai mà làm được mình sẽ k
dễ mà 1/2=1-1/2; 5/6=1-1/6; ... 89/90=1-1/90
Mà 1/2=1/1.2; 1/6=1/2.3; ... 1/90=1/9.10
Tương tự như thế sẽ tìm ra kq mik chỉ gợi ý thoy nhá !!!
\(A=\frac{1}{2}+\frac{5}{6}+...+\frac{89}{90}\)
\(A=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+...+\left(1-\frac{1}{90}\right)\)
\(A=9-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}\right)\)
Gọi \(A=9-B\)
\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(B=1-\frac{1}{10}=\frac{9}{10}\)
\(A=9-\frac{9}{10}\)
\(A=\frac{90-9}{10}=\frac{81}{10}\)
Ko đúng hơi tiếc :D
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
= 1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
= 9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
= 9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]
= 9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
=9 – (1 – 1/10) = 9 – 9/10 = 81/10
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90+109/110
= 1 - 1/2 + 1 - 1/6 + 1 - 1/12 .....+1 - 1/110
= 10 - ( 1/2 + 1/6 + ...+ 1/110)
= 10 - ( 1 - 1/ 2+ 1/2 - 1/ 3+ 1/3 - 1/4 ....+ 1/10 - 1/11)
= 10 - (1 - 1/11)= 10 - 10/11
= 100/11
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+1+1+1+1+1+1+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
= 1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90
= 9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
= 9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)]
= 9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10)
=9 – (1 – 1/10) = 9 – 9/10 = 81/10
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)=8+\frac{1}{10}=8,1\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{89}{90}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+....+\left(1-\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9+\frac{1}{10}=9,1\)
\(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{90}\right)=\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)=\)
\(=9-\left(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{9x10}\right)=\)
\(=9-\left(\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{10-9}{9x10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)=9-\frac{9}{10}=\frac{81}{10}=8\frac{1}{10}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}\)
\(=\frac{81}{10}\)
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+.....+\frac{71}{72}+\frac{89}{90}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+....+\left(1-\frac{1}{72}\right)+\left(1-\frac{1}{90}\right)\)
\(=\left(1+1+1+....+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)=9-\frac{9}{10}=\frac{81}{10}\)