Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}\)
\(A=\left(101-1-...-1\right)+\left(\frac{100}{2}+1\right)+\left(\frac{99}{3}+1\right)+...+\left(\frac{1}{101}+1\right)\)
\(A=\frac{102}{102}+\frac{102}{2}+\frac{102}{3}+...+\frac{102}{101}\)
\(A=102\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}+\frac{1}{102}\right)\)
\(\Rightarrow\)\(\frac{A}{B}=\frac{102\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}=\frac{102}{1}=102\)
Vậy \(\frac{A}{B}=102\)
Chúc bạn học tốt ~
b) \(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot...\cdot\frac{100^2}{100\cdot101}=\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{1\cdot2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{2\cdot3\cdot4\cdot...\cdot101}=1\cdot\frac{1}{101}=\frac{1}{101}\)
a không biết
Các bạn làm rõ ra nhé và nhanh lên mình đang cần gấp