K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

\(=\dfrac{1}{8}\)

3 tháng 10 2018

\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{7}\)

\(\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\left(-\dfrac{1}{3}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+\left(-\dfrac{1}{5}+\dfrac{1}{5}\right)+\left(\dfrac{1}{6}-\dfrac{1}{6}\right)+\left(\dfrac{-1}{7}+\dfrac{1}{7}\right)+\dfrac{1}{8}\)

=0+0+0+0+0+0+\(\dfrac{1}{8}\)

=\(\dfrac{1}{8}\)

a: \(A=\left[6\cdot\dfrac{1}{27}+3\cdot\dfrac{1}{3}+1\right]:\dfrac{-4}{3}\)

\(=\left(\dfrac{2}{9}+2\right)\cdot\dfrac{-3}{4}\)

\(=\dfrac{20}{9}\cdot\dfrac{-3}{4}=\dfrac{-60}{36}=\dfrac{-5}{3}\)

b: \(B=\dfrac{\dfrac{1}{3}\left(\dfrac{1}{13}-\dfrac{1}{2}-\dfrac{1}{17}\right)}{-\dfrac{1}{4}\left(\dfrac{1}{13}-\dfrac{1}{2}-\dfrac{1}{17}\right)}:\dfrac{11}{6}\)

\(=\dfrac{-1}{3}:\dfrac{1}{4}\cdot\dfrac{6}{11}=\dfrac{-4}{3}\cdot\dfrac{6}{11}=\dfrac{-24}{33}=\dfrac{-8}{11}\)

22 tháng 3 2018

A=1

bấm máy tính cx thấy mệt luôn!!!oaoa

22 tháng 3 2018

thương nhiuhaha

11 tháng 7 2017

a) \(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{5}=\dfrac{1}{12}-\dfrac{-1}{6}+\dfrac{-2}{5}=\dfrac{1}{4}+\dfrac{-2}{5}=\dfrac{-3}{20}\)

b) \(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}=\left(\dfrac{-2}{3}-\dfrac{5}{6}\right)+\left(\dfrac{-1}{5}-\dfrac{-7}{10}\right)+\dfrac{3}{4}\)

\(=\dfrac{-3}{2}+\dfrac{1}{2}-\dfrac{3}{4}\)

= \(=-1-\dfrac{3}{4}\)

\(=\dfrac{-1}{4}\)

c)\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)

= \(\left(\dfrac{1}{2}-\dfrac{-1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-4}{35}+\dfrac{5}{7}-\dfrac{-2}{5}\right)+\dfrac{1}{41}\)

= \(1+1+\dfrac{1}{41}\)

= \(\dfrac{83}{41}\)

d)\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

= \(\dfrac{1}{100}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{98}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{1}\)

= \(\dfrac{1}{100}-\dfrac{1}{1}\)

= \(\dfrac{-99}{100}\)

11 tháng 7 2017

d đảo 1/1.2.1/2.3 ... 1/99.1000

=1/1 -1/2 +1/2-1/3 ... -1/99 - 1/1000

=1/1 -1/1000

=999/1000

16 tháng 6 2019

câu a) mình chịu (dùng kiến thức lớp 12 chắc làm đc haha)

b) gt ⇒ \(\frac{1}{6}.6^{x+2}-6^x=6^{14}-6^{13}\)

\(6^{x+1}-6^x=6^{14}-6^{13}\)

\(6^x\left(6-1\right)=6^{13}\left(6-1\right)\)

\(x=13\)

c) gt ⇒ \(\frac{1}{2}.2^{x+4}-2^x=2^{13}-2^{10}\)

\(2^{x+3}-2^x=2^{13}-2^{10}\)

\(2^x\left(2^3-1\right)=2^{10}\left(2^3-1\right)\)

\(x=10\)

d) gt ⇒ \(\frac{1}{3}.3^{x+4}-4.3^x=3^{16}-4.3^{13}\)

\(3^{x+3}-4.3^x=3^{16}-4.3^{13}\)

\(3^x\left(3^3-4\right)=3^{13}\left(3^3-4\right)\)

\(x=13\)

15 tháng 6 2019

câu d chưa có đóng ngoặc kìa bn

26 tháng 1 2018

Đặt: \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)

Ta có: \(\left\{{}\begin{matrix}A>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\\A< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\end{matrix}\right.\)

Vậy \(\dfrac{1}{6}< A< \dfrac{1}{4}\)

28 tháng 3 2018
https://i.imgur.com/0DG8QJy.png
26 tháng 12 2017

\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\\ =\dfrac{1}{5.5}+\dfrac{1}{6.6}+...+\dfrac{1}{100.100}\\ < \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\\ =\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)

\(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+....+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\\=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\\ =\dfrac{1}{5}-\dfrac{1}{101}\)

26 tháng 12 2017

and.....