Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=2^{2-3\sqrt{5}}.8^{\sqrt{5}}=2^{2-3\sqrt{5}}.2^{3\sqrt{5}}=2^{\left(2-3\sqrt{5}\right)+3\sqrt{5}}=2^2=4\)
\(A=4\)
d)
\(D=\left(4^{2\sqrt{3}}-4^{\sqrt{3}-1}\right).2^{-2\sqrt{3}}=2^{4\sqrt{3}-2\sqrt{3}}-2^{2\sqrt{3}-2-2\sqrt{3}}\)
\(D=2^{2\sqrt{3}}-\dfrac{1}{4}\)
b) \(=\dfrac{3^{1+2\sqrt[3]{2}}}{3^{2\sqrt[3]{2}}}=3^{1+2\sqrt[3]{2}-2\sqrt[3]{2}}=3^1=3\)
c) \(=\dfrac{\left(2.5\right)^{2+\sqrt{7}}}{2^{2+\sqrt{7}}5^{1+\sqrt{7}}}=\dfrac{2^{2+\sqrt{7}}5^{2+\sqrt{7}}}{2^{2+\sqrt{7}}5^{1+\sqrt{7}}}=5\)
d) \(=\left(2^{2.\left(2\sqrt{3}\right)}-2^{2\left(\sqrt{3}-1\right)}\right).2^{-2\sqrt{3}}\)
\(=2^{4\sqrt{3}-2\sqrt{3}}-2^{2\sqrt{3}-2-2\sqrt{3}}\)
\(=2^{2\sqrt{3}}-2^{-2}\)
\(=2^{2\sqrt{3}}-\dfrac{1}{2^2}\)
\(=\dfrac{2^{2+2\sqrt{3}}-1}{4}\)
a) . = = = = = 9.
b) : = = = = = = 8.
c) + = + = + = + = + = 40.
d) - = - = - = - = 121.
a) \(9^{\dfrac{2}{5}}.27^{\dfrac{2}{5}}=\left(9.27\right)^{\dfrac{2}{5}}=\left(3^2.3^3\right)^{\dfrac{2}{5}}=3^{5.\dfrac{2}{5}}=3^2=9\)
b) \(=\left(\dfrac{144}{9}\right)^{\dfrac{3}{4}}=\left(\dfrac{12}{3}\right)^{2.\dfrac{3}{4}}=4^{\dfrac{3}{2}}=2^{2.\dfrac{3}{2}}=2^3=8\)
c) \(=\left(\dfrac{1}{2}\right)^{4.\left(-0,75\right)}+\left(\dfrac{1}{4}\right)^{-\dfrac{5}{2}}\)
\(=\left(\dfrac{1}{2}\right)^{-3}+\left(\dfrac{1}{2}\right)^{-5}\)
\(=2^3+2^5=40\)
d) \(=\left(0,2\right)^{2.\left(-1.5\right)}-\left(0,5\right)^{3.\dfrac{-2}{3}}\)
\(=\left(\dfrac{1}{5}\right)^{-3}-\left(\dfrac{1}{2}\right)^{-2}\)
\(=5^3-2^2=121\)
Trả lời :
1, a.80000
2, c. 4/5 + 4/5 = 4+4/5
3, Chiều dài hình chữ nhật đó là :
64 : ( 3 + 5 ) x 5 = 40 m
Chiều rộng hình chữ nhật đó là :
64 - 40 = 24 m
Diện tích hình chữ nhật đó là :
40 x 24 = 960 m2
~Hok tốt~
a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)
b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)
c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)
d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)
\(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)
\(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)
a. \(\int\dfrac{x^3}{x-2}dx=\int\left(x^2+2x+4+\dfrac{8}{x-2}\right)dx=\dfrac{1}{3}x^3+x^2+4x+8ln\left|x-2\right|+C\)
b. \(\int\dfrac{dx}{x\sqrt{x^2+1}}=\int\dfrac{xdx}{x^2\sqrt{x^2+1}}\)
Đặt \(\sqrt{x^2+1}=u\Rightarrow x^2=u^2-1\Rightarrow xdx=udu\)
\(I=\int\dfrac{udu}{\left(u^2-1\right)u}=\int\dfrac{du}{u^2-1}=\dfrac{1}{2}\int\left(\dfrac{1}{u-1}-\dfrac{1}{u+1}\right)du=\dfrac{1}{2}ln\left|\dfrac{u-1}{u+1}\right|+C\)
\(=\dfrac{1}{2}ln\left|\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|+C\)
c. \(\int\left(\dfrac{5}{x}+\sqrt{x^3}\right)dx=\int\left(\dfrac{5}{x}+x^{\dfrac{3}{2}}\right)dx=5ln\left|x\right|+\dfrac{2}{5}\sqrt{x^5}+C\)
d. \(\int\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx=\int\left(x^{-\dfrac{1}{2}}+x^{-\dfrac{3}{2}}\right)dx=2\sqrt{x}-\dfrac{1}{2\sqrt{x}}+C\)
e. \(\int\dfrac{dx}{\sqrt{1-x^2}}=arcsin\left(x\right)+C\)