K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
13 tháng 6 2018
\(\hept{\begin{cases}x-y=3\\\left(x-y\right).\left(x^2+xy+y^2\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=3\\x^2+xy+y^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-3\\x^2+x.\left(x-3\right)+\left(x-3\right)^2=3\left(I\right)\end{cases}}}\)
Phương trình (I) tương đương: \(x^2+x^2-3x+x^2-6x+9=3\Leftrightarrow3x^2-9x+6=0\Rightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-2\\y=-1\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(1,-2\right),\left(2,-1\right)\)
\(S=\left(x+2012\right)+\left(2y-2013\right)+\left(3z+2014\right)=a+b+c\)
\(P=a^5+b^5+c^5\)
\(P-S=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)+b\left(b-1\right)\left(b+1\right)\left(b^2+1\right)+c\left(c-1\right)\left(c+1\right)\left(c^2+1\right)\)
Ta chứng minh \(a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\) chia hết cho 30 .
tương tự => \(b\left(b-1\right)\left(b+1\right)\left(b^2+1\right);c\left(c-1\right)\left(c+1\right)\left(c^2+1\right)\)chia hết cho 30.
=> P -S chia hết cho 30 => (dpcm)