K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow x\left(2x^2+10x-x-5\right)-\left(2x^3+9x^2+x+4.5\right)=3.5\)

\(\Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4.5=3.5\)

=>-6x=8

hay x=-4/3

17 tháng 12 2016

\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4.5\right)=3.5\)

\(=>2x^3+10x^2-x^2-5x-2x^3-9x^2-x-4.5-3.5=0\)

\(=>-6x-8=0\)

\(=>-2\left(3x+4\right)=0\)

\(=>3x+4=0\)(vì \(-2\ne0\))

\(=>x=\frac{-4}{3}\)

17 tháng 12 2016

\(x=\frac{-4}{3}\)

1 tháng 7 2019

#)Giải :

\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)

\(\Leftrightarrow\left(2x^2-x\right)\left(x+5\right)-2x^3-9x^2-x-4,5=3,5\)

\(\Leftrightarrow2x^3+10x^2-x^2-5x-2x^3-9x^2-x-4,5=3,5\)

\(\Leftrightarrow-5x-4,5=3,5\)

\(\Leftrightarrow-5x=8\)

\(\Leftrightarrow x=-\frac{8}{5}\)

1 tháng 7 2019

\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)

\(\Leftrightarrow\left(2x^2-x\right)\left(x+5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\)

\(\Leftrightarrow2x^3+10x^2-x^2-5x-2x^3-9x^2-x-4,5=3,5\)

\(\Leftrightarrow-6x=8\)

\(\Leftrightarrow x=\frac{-8}{6}=\frac{-4}{3}\)

27 tháng 12 2017

\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)

\(\Rightarrow\left(2x^2-x\right)\left(x+5\right)-2x^3-9x^2-x-4,5=3,5\)

\(\Rightarrow2x^3+10x^2-x^2-5x-2x^3-9x^2-x-4,5=3,5\)

\(\Rightarrow-5x-4,5=3,5\)

\(\Rightarrow-5x=8\)

\(\Rightarrow x=-\dfrac{8}{5}\)

27 tháng 12 2017

\(3x^2-3x\left(x-2\right)=36\\ \Rightarrow3x\left(x-x+2\right)=36\\ \Rightarrow6x=36\\ \Rightarrow x=6\)

\(\left(3x^2-x+1\right)\left(x-1\right)+x^2\left(4-3x\right)=\dfrac{5}{2}\\ \Rightarrow3x^3-4x^2+2x-1+\left(4x^2-3x^3\right)=\dfrac{5}{2}\\ \Rightarrow2x-1=\dfrac{5}{2}\\ \Rightarrow x=\dfrac{7}{4}\)

27 tháng 12 2017

ý a thì sao pn

11 tháng 5 2016

a) \(=3x^{n-2}.x^{n+2}-3x^{n-2}.y^{n+2}+y^{n+2}.3x^{n-2}-y^{n+2}.y^{n-2}\)

    \(=3x^n-y^n\)

b) ; c) ; d) Tương tự nhé

    

    

30 tháng 11 2016

\(2x^2-7x+5=0\)

\(2x^2-2x-5x+5=0\)

\(2x\left(x-1\right)-5\left(x-1\right)=0\)

\(\left(x-1\right)\left(2x-5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)

\(x\left(2x-5\right)-4x+10=0\)

\(x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(x-2\right)=0\)

\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)

\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)

\(x^2-25-x^2+2x=15\)

\(2x=15+25\)

\(2x=40\)

\(x=\frac{40}{2}\)

\(x=20\)

\(x^2\left(2x-3\right)-12+8x=0\)

\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)

\(\left(2x-3\right)\left(x^2+4\right)=0\)

\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))

\(2x=3\)

\(x=\frac{3}{2}\)

\(x\left(x-1\right)+5x-5=0\)

\(x\left(x-1\right)+5\left(x-1\right)=0\)

\(\left(x-1\right)\left(x+5\right)=0\)

\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)

\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)

\(4x^2-12x+9-4x^2+4x=5\)

\(-8x=5-9\)

\(-8x=-4\)

\(x=\frac{4}{8}\)

\(x=\frac{1}{2}\)

\(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(5x-2x^2+2x^2-2x=13\)

\(3x=13\)

\(x=\frac{13}{3}\)

\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)

\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)

\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)

\(\left(2x-5\right)\left(x+11\right)=0\)

\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)

30 tháng 11 2016

Cảm ơn

 

a) Ta có: \(\left(x+5\right)\left(2x-1\right)=\left(2x-3\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x+5\right)\left(2x-1\right)-\left(2x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow2x^2-x+10x-5-\left(2x^2+2x-3x-3\right)=0\)

\(\Leftrightarrow2x^2+9x-5-2x^2+x+3=0\)

\(\Leftrightarrow10x-2=0\)

hay 10x=2

\(\Leftrightarrow x=\frac{1}{5}\)

Vậy: \(x=\frac{1}{5}\)

b) Ta có: \(\left(x+1\right)\left(x+9\right)=\left(x+3\right)\left(x+5\right)\)

\(\Leftrightarrow x^2+9x+x+9=x^2+5x+3x+15\)

\(\Leftrightarrow x^2+10x+9-x^2-8x-15=0\)

\(\Leftrightarrow2x-6=0\)

hay 2x=6

\(\Leftrightarrow x=3\)

Vậy: x=3

c) Ta có: \(\left(3x+5\right)\left(2x+1\right)=\left(6x-2\right)\left(x-3\right)\)

\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow33x=1\)

hay \(x=\frac{1}{33}\)

Vậy: \(x=\frac{1}{33}\)

d) Ta có: \(\left(x-2\right)\left(3x+5\right)=\left(2x-4\right)\left(x+1\right)\)

\(\Leftrightarrow3x^2+5x-6x-10=2x^2+2x-4x-4\)

\(\Leftrightarrow3x^2-x-10=2x^2-2x-4\)

\(\Leftrightarrow3x^2-x-10-2x^2+2x+4=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{-3;2\right\}\)

đ) Ta có: \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)

e) Ta có: \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x-4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 2 2020

a) $(x+5)(2x-1)=(2x-3)(x+1)$

$\Leftrightarrow 2x^2+9x-5=2x^2-x-3$

$\Leftrightarrow 10x=2\Rightarrow x=\frac{1}{5}$

b)

$(x+1)(x+9)=(x+3)(x+5)$

$\Leftrightarrow x^2+10x+9=x^2+8x+15$

$\Leftrightarrow 2x=6\Rightarrow x=3$

c)

$(3x+5)(2x+1)=(6x-2)(x-3)$

$\Leftrightarrow 6x^2+13x+5=6x^2-20x+6$

$\Leftrightarrow 33x=1\Rightarrow x=\frac{1}{33}$