Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a. Ta thấy:
$|x|\geq 0; |y-1|\geq 0$ với mọi $x,y$
$\Rightarrow$ để tổng $|x|+|y-1|=0$ thì:
$|x|=|y-1|=0\Rightarrow x=0; y=1$.
b. Ta thấy:
$|x-1|\geq 0; |2y-4|\geq 0$
$\Rightarrow |x-1|+|2y-4|\geq 0$ với mọi $x,y$.
Do đó không tồn tại $x,y$ để $|x-1|+|2y-4|<0$
Câu 1:
a: =>-2x-x+17=34+x-25
=>-3x+17=x+9
=>-4x=-8
hay x=2
b: =>17x+16x+27=2x+43
=>33x+27=2x+43
=>31x=16
hay x=16/31
c: =>-2x-3x+51=34+2x-50
=>-5x+51=2x-16
=>-7x=-67
hay x=67/7
e: 3x-32>-5x+1
=>8x>33
hay x>33/8
17x + 3. ( -16x – 37) = 2x + 43 - 4x
<=>17x-48x-111=-2x+43
<=>-29x=154
<=> \(x=-\frac{154}{29}\)
-3. (2x + 5) -16 < -4. (3 – 2x)
\(\Leftrightarrow-6x-31< -12+8x.\)
\(\Leftrightarrow-14x< 19\Rightarrow x< -\frac{19}{14}\)
`(x - 2)/3 = (x + 1)/4`
`(x - 2) . 4 = (x + 1) . 3`
`<=> 4x - 8 = 3x + 3`
`<=> 4x - 3x = 3 + 8`
`<=> (4 - 3)x = 11`
`=> x = 11`
`=>` `x = 11`
???