Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/x =3/y nên 2y=3x
Ta có:
xy=96
nên 2x.2y=384
2x.3x=384
6x2=384
x2=64 nên x=8 hoặc x=-8
Suy ra: y=12 hoặc y=-12
Vậy khi x=8 thì y=12
khi x=-8 thì y=-12
\(\frac{2}{x}=\frac{3}{y}\)--> \(\frac{x}{2}=\frac{y}{3}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
--> x = 2 k , y = 3 k
thay x = 2 k , y = 3 k vào xy = 96
Ta có :
2 k . 3 k = 96
6 . k2 = 96
k2 = 16
--> k = 4 hoặc k = - 4
Thay k = 4 vào x = 2 k , y = 3 k ta có :
x = 2 k = 2 . 4 = 8
y = 3 k = 3 . 4 = 12
Thay k = - 4 váo x = 2 k , y = 3 k ta lại có :
x = 2 k = 2 . ( - 4 ) = - 8
y = 3 k = 3 . ( - 4 ) = - 12
Vậy x = 8 , y = 12
hoặc x = - 8 , y = - 12
a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
Suy ra :
+) \(\frac{x}{7}=2\Leftrightarrow x=14\)
+) \(\frac{y}{13}=2\Leftrightarrow y=26\)
Vậy x = 14 ; y = 26
b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
Suy ra :
+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)
+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)
Vậy x = - 51 ; y = - 9
c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Suy ra :
+) \(\frac{x}{19}=2\Leftrightarrow x=38\)
+) \(\frac{y}{21}=2\Leftrightarrow y=42\)
Vậy x = 38 ; y = 42
d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Suy ra :
+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)
Vậy x =\(\pm\)6 ; y =\(\pm\)8
a,AD t/c DTS bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)
b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
AD t/c DTS bằng nhua ta có:
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)
c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)
AD t/c DTS bằng nhau ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)
d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)
\(\Rightarrow x^2=9k;y^2=16k\)
\(\Rightarrow x^2+y^2=9k+16k=25k=100\)
\(\Rightarrow k=4\)
\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)
\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\Rightarrow10\left(x^2-2y^2\right)=7.\left(x^2+y^2\right)\)
\(10x^2-20y^2=7x^2+7y^2\)
\(10x^2-7x^2=20y^2+7y^2\)
\(3x^2=27y^2\)
\(x^2=9y^2\)
\(\Rightarrow x^4=81y^4\)
\(\text{Thay }x^4=81y^4\text{ vào }x^4y^4=81\text{ ta được:}\)
\(81y^4.y^4=81\)
\(y^8=1\)
\(\Rightarrow y=1\text{Hoặc }y=-1\)
\(\text{Với }y=1\text{ thì }x^4=81.1=81\Rightarrow x=3\text{ hoặc }x=-3\)
\(\text{Với }y=-1\text{ thì }x^4=81.1=81\Rightarrow x=3\text{ hoặc }x=-3\)
\(\text{Vậy }x=\left\{3;-3\right\};y=\left\{1;-1\right\}\)
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot7=14\\y=2\cdot13=26\end{cases}}\)
mình làm hơi tắt nhé!
Dựa vào tính chất của dãy tỉ số bằng nhau :
Ta có:\(\frac{x}{7}=\frac{y}{13}\)và \(x+y=40\)
\(\Rightarrow\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\frac{x}{7}=2\Rightarrow x=2.7=14\)
\(\Rightarrow\frac{y}{13}=2\Rightarrow y=13.2=26\)
Vậy \(x=14;y=26\)
x/7=y/13
=>x=7m;y=13m
x+y=40
=>7m+13m=40
=>20m=40
=>m=2
=>x=2.7=14
y=40-14=26
Vậy x=14;y=26
\(\frac{x}{7}=\frac{y}{13}\)
=> 13x=7y
=> x=\(\frac{7}{13}y\)
Vi x+y=40
=> \(\frac{7}{13}y+y=40\)
=> \(\frac{20}{13}y=40\)
=> y=26
=> x= 40-26=14
\(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)
\(\Rightarrow x.y.z=-528\Rightarrow8k.6k.11k=-528\Rightarrow528.k^3=-528\)
\(\Rightarrow k^3=-1\Rightarrow k=-1\)
\(\Rightarrow\hept{\begin{cases}x=-8\\y=-6\\z=-11\end{cases}}\)
x/4=y/3;
y/6=z/11 => y/3=2z/11 => y=6z/11
và x/4=y/3=2z/11 => x=8z/11
x.y.z=8z/11.6z/11.z=-528 => z3=-(528.11.11)/(8.6)=-1331 = -113 => z=-11;
x=-8.11/11=-8;
y=-6.11/11=-6
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
=>\(\frac{x}{7}=2\Rightarrow x=14\)
\(\frac{y}{13}=2\Rightarrow y=26\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\frac{x}{7}=2\Rightarrow x=14\)
\(\Rightarrow\frac{y}{13}=2\Rightarrow y=26\)
Áp ụng t/c của dãy tỉ số = nhau ta được :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\frac{x}{7}=2\Rightarrow x=14\)
\(\Rightarrow\frac{y}{13}=2\Rightarrow y=26\)