K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

\(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=1\)

\(\Leftrightarrow x=y=z=1\)

vậy nghiệm nguyên của pt là : \(\left(x,y,z\right)=1\)

18 tháng 5 2018

Nếu \(z\ge y\ge x\ge1\) thì

\(x=\frac{1\Rightarrow1}{y}+\frac{1}{z}=0\)( Ko thỏa mãn )

\(x=2\Rightarrow\frac{1}{y}+\frac{1}{z}=2\)\(\Rightarrow2y+2z=yz\Rightarrow\left(y-2\right)\left(z-2\right)=4\)

ta xét các trường hợp :

\(\hept{\begin{cases}y-2=1\\z-2=4\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\z=6\end{cases}}}\)

Hoặc \(\hept{\begin{cases}y-2=2\\z-2=2\end{cases}\Leftrightarrow\hept{\begin{cases}y=4\\z=4\end{cases}}}\)

_ Nếu \(x=3\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)

_ Nếu \(x=3\Rightarrow y=3\)

_ Nếu \(y\ge4\Rightarrow\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)( Mà  \(\frac{3}{4}< 1\)) ( Ko thỏa mãn )

Vậy tự kết luận 

6 tháng 7 2016

Bài 1 : (Mình chỉ tìm GTLN được thôi nha, bạn xem lại đề)

x2 + y2 + z2 < 3 ; mà x,y,z > 0 => \(\left(x;y;z\right)\in\left\{0;1\right\}\)

Ta thấy: (xy+1)-(x+y) = (1-x).(1-y)>=0
=> xy+1 > x+y
Tương tự:
yz+1 > y+z
xz+1 > z+x

Ta có:
(x+y+z).(1/(xy+1)+1/(yz+1)+1/(zx+1)) <  x/(yz+1)+y/(zx+1)+z/(xy+1) 
                                                              x/(yz+1) + y/(zx+y) +z/(xy+z)
                                                              = x(1/(yz+1) -x/(xz+y) -y/(xy+z))
                                                              < x(1- z/(z+y) -y/(y+z))+5
                                                              = 5

Vậy GTLN là 5

31 tháng 1 2017

bạn viết dễ hiểu hơn dc ko

12 tháng 3 2015

+) Với các số nguyên dương x, y,z ta có \(\frac{x}{x+y}>\frac{x}{x+y+z}\)

                                                          \(\frac{y}{y+z}>\frac{y}{x+y+z}\) 

                                                           \(\frac{z}{z+x}>\frac{z}{x+y+z}\) 

Cộng từng vế của các bđt trên ta được \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)(*)

+) ta dễ dàng chứng minh được điều sau: Cho x,y, z dương. Nếu \(\frac{x}{y}<1\)thì \(\frac{x}{y}<\frac{x+z}{y+z}\). Áp dụng tính chất này ta có

\(\frac{x}{x+y}<1\)nên \(\frac{x}{x+y}<\frac{x+z}{x+y+z}\)

tương tự ta có         \(\frac{y}{y+z}<\frac{y+x}{x+y+z}\)

                              \(\frac{z}{z+x}<\frac{z+y}{x+y+z}\)

Cộng từng vế bất đẳng thức trên ta được \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}<\frac{2.\left(x+y+z\right)}{x+y+z}=2\)  (**)             

Từ (*)(**) => đpcm                                        

20 tháng 6 2016

\(\rightarrow\)Ta có: \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

                                           \(\Rightarrow\) \(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)

\(\rightarrow\)Tương tự như trên, ta có đẳng thức: \(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>\frac{y}{x+y+z}+\frac{z}{y+z+x}+\frac{x}{z+x+y}=\frac{y+z+x}{y+z+x}=1\)

Mà \(\left(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\right)+\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)=3\)

Kết hợp các Bất đẳng thức trên, ta có điều phải chứng minh.

11 tháng 1 2019

Áp  dụng bđt Svac ta có:

\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{\left(1+1+1\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)

25 tháng 8 2021

gg oaoa

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7 2024

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

25 tháng 8 2016

x(x-y) = 5(y-1) <=> x- yx2 - 5y + 5 = 0 

<=> y(x2 + 5) = x+ 5

<=> y = \(\frac{5+x^3}{5+x^2}=\frac{5}{5+x^2}-\frac{5x}{5+x^2}\)+ x

Để y nguyên thì cái đằng sau nguyên còn lại tự làm nha

25 tháng 8 2016

Tìm được x = 0; y = 1