K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2015

+) Với các số nguyên dương x, y,z ta có \(\frac{x}{x+y}>\frac{x}{x+y+z}\)

                                                          \(\frac{y}{y+z}>\frac{y}{x+y+z}\) 

                                                           \(\frac{z}{z+x}>\frac{z}{x+y+z}\) 

Cộng từng vế của các bđt trên ta được \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)(*)

+) ta dễ dàng chứng minh được điều sau: Cho x,y, z dương. Nếu \(\frac{x}{y}

20 tháng 6 2016

\(\rightarrow\)Ta có: \(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

                                           \(\Rightarrow\) \(1< \frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\)

\(\rightarrow\)Tương tự như trên, ta có đẳng thức: \(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}>\frac{y}{x+y+z}+\frac{z}{y+z+x}+\frac{x}{z+x+y}=\frac{y+z+x}{y+z+x}=1\)

Mà \(\left(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}\right)+\left(\frac{y}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}\right)=3\)

Kết hợp các Bất đẳng thức trên, ta có điều phải chứng minh.