Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{30}\right).120+x:\frac{1}{3}=-4\)
\(\Rightarrow\frac{1}{120}.120+x:\frac{1}{3}=-4\)
\(\Rightarrow1+x:\frac{1}{3}=-4\)
\(\Rightarrow x:\frac{1}{3}=-4-1=-5\)
\(\Rightarrow x=-5.\frac{1}{3}=\frac{-5}{3}\)
b)\(1\frac{3}{5}+\left(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{37}}{\frac{5}{7}+\frac{5}{17}+\frac{5}{37}}\right).x=\frac{16}{5}\)
\(\Rightarrow\frac{8}{5}+\left[\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}{5.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{37}\right)}\right].x=\frac{16}{5}\)
\(\Rightarrow\frac{8}{5}+\frac{2}{5}.x=\frac{16}{5}\)
\(\Rightarrow\frac{2}{5}.x=\frac{16}{5}-\frac{8}{5}=\frac{8}{5}\)
\(\Rightarrow x=\frac{8}{5}:\frac{2}{5}=\frac{8}{5}.\frac{5}{2}=\frac{8}{2}=4\)
\(\Rightarrow x=4\)
=> 1/24 - 1/25 + 1/25 - 1/ 26 + .... + 1/29 - 1/30 + x : 1/3 = -4
=> 1/24 - 1/30 + x : 1/3 = - 4
=> 1/ 120 + x : 1/3 = -4
=> x : 1/3 = 481/120
=> x = 481/360
Vậy x = 481/360
\(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}+x:\frac{1}{3}=-4\)
\(\Rightarrow\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}+x\times3=-4\)
\(\Rightarrow\frac{1}{24}-\frac{1}{30}+3x=-4\)
\(\Rightarrow\frac{1}{120}+3x=-4\)
Câu a) :
x=-5/3
Câu b) :
GỢI Ý : 3n-5 phải chia hết cho n-4 để A là số nguyên ( đk : n khác 4)
\(a,\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)
\(\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+3x=-4\)
\(\left(\frac{1}{24}-\frac{1}{30}\right).120+3x=-4\)
\(\frac{1}{120}.120+3x=-4\)
\(1+3x=-4\)
\(\Rightarrow3x=-5\)
\(\Rightarrow x=-\frac{5}{3}\)
\(b,A=\frac{3n-5}{n-4}=\frac{3n-12+7}{n-4}=3+\frac{7}{n-4}\)
Để \(A\in Z\Rightarrow7⋮n-4\Leftrightarrow n-4\in\left(1;-1;7;-7\right)\)
\(\Rightarrow n\in\left(5;3;11;-3\right)\)
\((\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}).120+y:\frac{1}{3}=-4\)
Ta có: \(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\)
\(=\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\)
\(=\frac{1}{24}-\frac{1}{30}\)
\(=\frac{1}{120}\)
Thay vào ta có: \(\frac{1}{120}.120+y:\frac{1}{3}=-4\)
\(\implies 1+y:\frac{1}{3}=-4\)
\(\implies y:\frac{1}{3}=-5\)
\(\implies y=-5.\frac{1}{3}\)
\(\implies y=\frac{-5}{3}\). Vậy \(y=\frac{-5}{3}\)
~ Học tốt a~
\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+y:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+y:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{30}\right).120+y:\frac{1}{3}=-4\)
\(\Rightarrow\frac{1}{120}.120+y:\frac{1}{3}=-4\)
\(\Rightarrow1+y:\frac{1}{3}=-4\)
\(\Rightarrow y:\frac{1}{3}=-4-1\)
\(\Rightarrow y:\frac{1}{3}=-5\)
\(\Rightarrow y=-5.\frac{1}{3}\)
\(\Rightarrow y=\frac{-5}{3}\)
Vậy \(y=\frac{-5}{3}\)
_Chúc bạn học tốt_
\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+y:\frac{1}{3}=-4\)
\(\Leftrightarrow\)\(\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+y:\frac{1}{3}=-4\)
\(\Leftrightarrow\)\(\left(\frac{1}{24}-\frac{1}{30}\right).120+y:\frac{1}{3}=-4\)
\(\Leftrightarrow\)\(1+3y=-4\)
\(\Leftrightarrow\)\(3y=-5\)
\(\Leftrightarrow\)\(y=-\frac{5}{3}\)
Vậy...
Ta có :
\(\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+y:\frac{1}{3}=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+y.3=-4\)
\(\Rightarrow\left(\frac{1}{24}-\frac{1}{30}\right).120+y.3=-4\)
\(\Rightarrow\left(\frac{5}{120}-\frac{4}{120}\right).120+y.3=-4\)
\(\Rightarrow\frac{1}{120}.120+y.3=-4\)
\(\Rightarrow1+y.3=-4\)
\(\Rightarrow3y=-4-1\)
\(\Rightarrow3y=-5\)
\(\Rightarrow y=-\frac{5}{3}\)
Vậy \(y=-\frac{5}{3}\)