Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=a, \(\dfrac{x}{15}\) = \(\dfrac{2}{5}\)
= \(x.5=15.2\)
=> \(x=\dfrac{15.2}{5}\)\(=\dfrac{30}{5}\) \(=6\)
Vậy \(x=6\)
b, \(\dfrac{3}{x-7}\) \(=\dfrac{27}{135}\)
= \(\dfrac{3}{x-7}\) \(=\dfrac{3}{15}\)
= \(x-7=15\)
\(x=15+7\)
\(x=22\)
vậy x = 22
c, \(320.x-10=5.48:24\)
= \(320x-10=240:24\)
= \(320x-10=10\)
= \(320x=10+10\)
\(320x=20\)
\(x=20:320\)
\(x=0,0625\)
d, \(5x-1952=\) \(2500-1947\)
\(5x-1952=553\)
\(5x=553+1952\)
\(5x=2505\)
\(x=2505:5\)
\(x=501\)
e, \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)\left(x+5\right)=45\)
= \(\left(x+x+x+x+x\right)\)+\(\left(1+2+3+4+5\right)\) \(=45\)
= \(5x+15=45\)
\(5x=45-15\)
\(5x=30\)
\(x=30:5\)
\(x=6\)
f, \(x-\dfrac{2}{3}-\dfrac{2}{15}-\dfrac{2}{35}-\dfrac{2}{63}=\dfrac{1}{9}\)
= \(x-\dfrac{2}{3}-\dfrac{2}{15}-\dfrac{2}{35}=\dfrac{1}{9}+\dfrac{2}{63}\)
= \(x-\dfrac{2}{3}-\dfrac{2}{15}-\dfrac{2}{35}=\dfrac{1}{7}\)
= \(x-\dfrac{2}{3}-\dfrac{2}{15}=\dfrac{1}{7}+\dfrac{2}{35}\)
= \(x-\dfrac{2}{3}-\dfrac{2}{15}=\dfrac{1}{5}\)
= \(x-\dfrac{2}{3}=\dfrac{1}{5}+\dfrac{2}{15}\)
= \(x-\dfrac{2}{3}=\dfrac{1}{3}\)
\(x=\) \(\dfrac{1}{3}+\dfrac{2}{3}\)
\(x=1\)
k, \(\dfrac{3+5+7+...+2015}{2+4+6+...+2014+x}=1\)
ta thấy phần tử là tập hợp các số lẻ ; phần mẫu là tập hợp các số chẵn
mà số chẵn hơn số lẻ 1 đơn vị
nên x thuộc tổng các số phần tử hơn mẫu là 1 đơn vị
=> từ \(2+4+6+...+2014\)có số số hạng là :
( 2014 - 2 ) : 2 + 1 = 1007
vậy x sẽ bằng :
( 1 + 1 ) . 1007 : 2 = 1007
vập số cần tìm là : 1007
Ta có: (8y-1942).1947=(2400-1942).19470
\(\Rightarrow\)8y-1942=458.10
\(\Rightarrow\)8y=4580+1942
\(\Rightarrow\)8y=6522
\(\Rightarrow\)y=6522:8=815,25
\(\left(8.y-1942\right).1947=\left(2400-1942\right).19470\)
\(\Leftrightarrow\left(8.y-1942\right).1947=458.19470\)
\(\Leftrightarrow\left(8.y-1942\right).1947=8917260\)
\(\Leftrightarrow8.y-1942=8917260:1947\)
\(\Leftrightarrow8.y-1942=4580\)
\(\Leftrightarrow8.y=4580+1942\)
\(\Leftrightarrow8.y=6522\)
\(\Leftrightarrow y=6522:8\)
\(\Leftrightarrow y=\frac{3261}{4}\)
~ Rất vui vì giúp đc bn ~
Bài 1: tìm x thuộc tập hợp N, biết
A) 6x +4x=2010
6 * x + 4 * x = 2010
(6 + 4) * x = 2010
10 * x = 2010
x= 2010 : 10
x= 201
B) (x-10) ×11=0
\(\Rightarrow\)x - 10 = 0
x = 0 + 10
x = 10
Bài 2: tìm x,y thuộc N, biết
A) x×y-2x=0
\(\Rightarrow x\)= 0
B) (x-4)×(x-3)=0
\(\Rightarrow\)x - 4 = 0
x = 0 + 4
x = 4
Bài 3: tính tổng
A) S=1+2+...+2000
Số các số hạng: (2000 - 1) : 1 + 1= 2000 (số)
Tổng: (2000 + 1) * 2000 : 2 = 2 001 000
B) S= 2+4+...+2010
Số các số hạng: (2010 - 2) : 2 +1= 1005 (số)
Tổng: (2010 + 2) * 1005 : 2 = 1 011 030
C) S=1+3+...+2011
Số các số hạng; (2011 - 1) : 2 +1 = 1006 (số)
Tổng: (2011 +1) * 1006 : 2 = 1 012 036
D) 5+10+15+...+2015
Số các số hạng: (2015 - 5) : 5 + 1 = 403 (số)
Tổng: (2015 + 5) * 403 :2 = 407 030
E) 3+6+...+2010
Số các số hạng: (2010 - 3) : 3 +1 = 670 (số)
Tổng: (2010 + 3) * 670 : 2 = 674 355
G)4+8+12+...+2012
Số các số hạng: (2012 - 4) : 4 + 1 = 503 (số)
Tổng: (2012 + 4) * 503 : 2 = 507 024
b,Vì (x-5 ) (y-7)=1 nên x-5 và y-7 đều thuộc Ư(1)=[-1,1]
Ta có bảng sau:
x-5 1 -1
y-7 1 -1
x 6 4
y 8 6
Vậy(x,y)=(6,8),(4,6)
Những câu c,d,e làm tương tự.
\(\left(x+1\right)\left(y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)
vậy x=-1 và y=2
\(\left(x-5\right)\left(y-7\right)=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=1\\y-7=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\y=8\end{cases}}\)
vậy x=6 vs y=8
\(\left(x+4\right)\left(y-2\right)=1\Leftrightarrow\orbr{\begin{cases}x+4=1\\y-2=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\y=3\end{cases}}\)
vậy x=-3 và y=3
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
a) \(\frac{y}{6}=\frac{2010}{15}\) c) \(x-\frac{1}{3}=\frac{1}{4}\) e)\(5y-1952=2500-1947\)
\(y=\frac{2010}{15}.6\) \(x=\frac{1}{4}+\frac{1}{3}\) \(5y-1952=553\)
\(y=804\) \(x=\frac{7}{12}\) \(5y=553+1952\)
\(5y=2505\)
\(y=2505:5=501\)
b) \(x+\frac{1}{2}=\frac{3}{4}\) c) \(3x+\frac{3}{8}=\frac{1}{2}\)
\(x=\frac{3}{4}-\frac{1}{2}\) \(3x=\frac{1}{2}-\frac{3}{8}\)
\(x=\frac{1}{4}\) \(3x=\frac{1}{8}\)
\(x=\frac{1}{8}:3\)
\(x=\frac{1}{24}\)
f)\(\left(8y-1942\right).1947=\left(240-194,2\right).19470\)
\(\left(8y-1942\right).1947=45,8.19470\)
\(\left(8y-1942\right)=45,8.19470:1947\)
\(8y-1942=45,8.10\)
\(8y-1942=458\)
\(8y=458+1942\)
\(8y=2400\)
\(y=2400:8\)
\(y=300\)