K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

Ta có : \(\frac{2}{y}\)+ 3 = \(\frac{3}{y}\)+ 8

\(\Rightarrow\)\(\frac{2}{y}\) - \(\frac{3}{y}\)= 8 - 3

\(\Rightarrow\)\(\frac{-1}{y}\)= 5

\(\Rightarrow\)y = \(-5\)

Vì x,y tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

nên \(\dfrac{x_1}{3}=\dfrac{-2}{\dfrac{3}{8}}=-2\cdot\dfrac{8}{3}=-\dfrac{16}{3}\)

=>\(x_1=-16\)

b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)

\(\Leftrightarrow\dfrac{x_2}{x_1}=\dfrac{y_2}{y_1}\)

\(\Leftrightarrow\dfrac{x_2}{-6}=\dfrac{y_2}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_2}{-6}=\dfrac{y_2}{4}=\dfrac{y_2-x_2}{4-\left(-6\right)}=\dfrac{-5}{10}=-\dfrac{1}{2}\)

Do đó: \(x_2=3;y_2=-2\)

29 tháng 9 2016

-1,5625 và 1,5625

DD
17 tháng 10 2021

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1-2\left(y-2\right)+3\left(z-3\right)}{2-2.3+3.4}=\frac{x-2y+3z-6}{8}=1\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2\\y-2=3\\z-3=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)

23 tháng 9 2016

a)

\(\frac{x}{18}=\frac{y}{15},x-y=-30\)

\(\frac{x}{18}=\frac{y}{15}\)

\(\frac{x}{18}-\frac{y}{15}=0\)

\(-\frac{6y-5x}{90}=0\)

\(6y-5x=0\)

\(x-y=-30\)

\(-\left(y-x-30\right)=0\)

\(y-x-30=0\)

\(\Rightarrow x=-180;y=-150\)

8 tháng 12 2021

dẫn tui bài y:9-8=15 với

2 tháng 2 2019

Ta có : \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{125}\)=> \(\frac{x^3}{2^3}=\frac{y^3}{3^3}=\frac{z^3}{5^3}\)=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)=> \(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)(*)

Khi đó, ta có: xyz = 810

hay 2k.3k.5k = 810

=> 30.k3 = 810

=> k3 = 810 : 30

=> k3 = 27

=> k = 3

Thay k = 3 vào * ta được:

x = 2 . 3 = 6

y = 3.3 = 9

z = 5 . 3 = 15

vậy ...

9 tháng 10 2017


\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và z + y + x = 1 + 2 + 3 = 6
Theo đề ra ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{6}{6}=1\)( áp dụng tính chất dãy tỉ số bằng nhau )
Nếu \(\frac{x}{1}=1\Rightarrow x=1.1=1\)
       \(\frac{y}{2}=1\Rightarrow y=2.1=2\)
       \(\frac{z}{3}=1\Rightarrow x=3.1=3\)

9 tháng 10 2017

Áp dụng ...

=> x/1 = y/2 = z/3 = x+y+z/ 1+2+3 = 1+2+3/1+2+3 = 1

=> x/1 = 1 -> x =1

y/2 = 1 -> y=2

z/3 = 1=> z=3 

Vậy x= 1, y=2, z=3