Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2=\left[\left(x+y+z\right)+t\right]\ge4t\left(x+y+z\right)\)
\(\Rightarrow1\ge2t\left(x+y+z\right)\) (1)
Lại có : \(\left(x+y+z\right)^2=\left[\left(x+y\right)+z\right]^2\ge4z\left(x+y\right)\) (2)
\(\left(x+y\right)^2\ge4xy\) (3)
Nhân (1) , (2) , (3) theo vế được :
\(\left(x+y\right)^2\left(x+y+z\right)^2\ge16xyzt\left(x+y\right)\left(x+y+z\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x+y+z\right)\ge16xyzt\Leftrightarrow\frac{\left(x+y\right)\left(x+y+z\right)}{xyzt}\ge16\)
Suy ra Min B = 16 \(\Leftrightarrow\begin{cases}x+y+z=t\\x+y=z\\x=y\\x+y+z+t=2\end{cases}\) \(\Leftrightarrow\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\\t=1\end{cases}\)
bạn Ngọc ơi! cho mình hỏi vì sao bạn có được hàng đầu tiên vậy? Nó liên kết với hàng 3 như thế nào? Hàng 1 không bình phương nhưng sao lại vẫn có được như hàng 3?
\(B\ge\dfrac{4\left(x+y+z\right)\left(x+y\right)}{\left(x+y\right)^2zt}=\dfrac{4\left(x+y+z\right)}{\left(x+y\right)zt}\ge\dfrac{16\left(x+y+z\right)}{\left(x+y+z\right)^2t}\)
\(B\ge\dfrac{16}{\left(x+y+z\right)t}\ge\dfrac{64}{\left(x+y+z+t\right)^4}=64\)
\(B_{min}=64\) khi \(\left(x;y;z;t\right)=\left(\dfrac{1}{8};\dfrac{1}{8};\dfrac{1}{4};\dfrac{1}{2}\right)\)