Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x}{15}=\dfrac{y}{9};9z=7y\Rightarrow\dfrac{z}{7}=\dfrac{y}{9}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{7}\)
Áp dụng...
\(\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{7}=\dfrac{3x}{45}=\dfrac{2y}{18}=\dfrac{4z}{28}=\dfrac{3x-2y-4z}{45-18-28}=\dfrac{10}{-1}=-10\\ \Rightarrow\left\{{}\begin{matrix}x=-150\\y=-90\\z=-70\end{matrix}\right.\)
\(3x=5y\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}\)
hay \(\dfrac{x}{15}=\dfrac{y}{9}\left(1\right)\)
7y=9z
nên \(\dfrac{y}{9}=\dfrac{z}{7}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{4}=\dfrac{3x-2y-4z}{45-18-16}=\dfrac{10}{11}\)
Do đó: \(x=\dfrac{150}{11};y=\dfrac{90}{11};z=\dfrac{40}{11}\)
Ta sẽ đưa các tích về 1 dãy tỉ số
\(3x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{3}\Leftrightarrow\frac{x}{15}=\frac{y}{9},7y=9z\Leftrightarrow\frac{y}{9}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7},x-y+z=117\left(gt\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau cho dãy tỉ số trên ta được
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\Rightarrow x=15.9=135,y=9.9=81,z=7.9=63\)
Vậy \(x=135,y=81,z=63\)
Ta có: \(3x=5y=\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x}{15}=\frac{y}{9}\)
\(7y=9z=\frac{y}{9}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\)
\(\Rightarrow\frac{x}{15}=9\Rightarrow x=9\cdot15=135\)
\(\frac{y}{9}=9\Rightarrow y=9\cdot9=81\)
\(\frac{z}{7}=9\Rightarrow z=9\cdot7=63\)
Vậy x=135, y=81 và z=63
\(\Rightarrow\frac{x}{1}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6.4+7.12+8.15}=\frac{456}{228}=2\)
=> x= 4.2 =8
y = 12.2 =24
z = 15.2 =30
Ta có \(\hept{\begin{cases}3x=y\\5y=4z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{1}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)
Đặt \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=k\Rightarrow\hept{\begin{cases}x=4k\\y=12k\\z=15k\end{cases}}\)
Khi đó 23x - 7y - 2z = - 44
<=> 23.4k - 7.12k - 2.15k = -44
=> 92k - 84k - 30k = -44
=> -22k = -44
=> k = 2
=> x = 8 ; y = 24 ; z = 30
minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z
+) 10x=15y=21z ( Quy dong)
+)10x/210 = 15y/210 = 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( Rut gon)
+) 3x/63 = 7y/98 = 5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2
+ x/21 = 2 => ............ phan nay minh chua xong neu xong thi minh pm not cho
3x=y
=>x/1=y/3
=>x/4=y/12
5y=4z
=>y/4=z/5
=>y/12=z/15
=>x/4=y/12=z/15
=>6x/24=7y/84=8z/120
áp dụng tc dãy ts = nhau ta có :
6x/24=7y/84=8z/120 = 6x+7y+8z/24+84+120=456/228=2
=>x/4=2=>x=8
=>y/12=2=>y=24
=>z/15=2=>z=30
vậy ...
3x=y nên x=y/3 nên x/4=y/12
5y=4z nên y/4=z/5 nên y/12=z/15
=>x/4=y/12=z/15
nên 6x/24=7y/84=8z/120
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
6x/24=7y/84=8z/120=(6x+7y+8z)/(24+84+120)=456/228=2
Do đó, x/4=2 nên x=2*4=8
y/12=2 nên y=2*12=24
z/15=2 nên z=2*15=30
\(3x=2y\)=> \(\frac{x}{2}=\frac{y}{3}\)hay \(\frac{x}{8}=\frac{y}{12}\)
\(4z=7y\)=> \(\frac{z}{7}=\frac{y}{4}\)hay \(\frac{z}{21}=\frac{y}{12}\)
suy ra: \(\frac{x}{8}=\frac{y}{12}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{21}=\frac{x+y+z}{8+12+21}=\frac{106}{41}\)
đến đây bạn tự làm nhé
\(3x=2y;4z=7y\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)và \(\frac{z}{7}=\frac{y}{4}\)
+) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)(1) ( Mẫu nhân 4 )
+) \(\frac{z}{7}=\frac{y}{4}\Rightarrow\frac{z}{21}=\frac{y}{12}\) (2) ( Mẫu nhân 3 )
Từ (1) và (2) ta có dãy tỉ số : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{21}=\frac{x+y+z}{8+12+21}=\frac{106}{41}\)
\(\Rightarrow\frac{x}{8}=\frac{106}{41}\Rightarrow x=\frac{848}{41}\)
\(\Rightarrow\frac{y}{12}=\frac{106}{41}\Rightarrow y=\frac{1272}{41}\)
\(\Rightarrow\frac{z}{21}=\frac{106}{41}\Rightarrow z=\frac{2226}{41}\)
Vậy .......
\(3x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x}{15}=\dfrac{y}{9}\)
\(9z=7y\Rightarrow\dfrac{y}{9}=\dfrac{z}{7}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{7}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{15}=\dfrac{y}{9}=\dfrac{z}{7}=\dfrac{3x-2y-4z}{45-18-28}=\dfrac{10}{-1}=-10\)
\(\dfrac{x}{15}=-10\Rightarrow x=-150\\ \dfrac{y}{9}=-10\Rightarrow y=-90\\ \dfrac{z}{7}=-10\Rightarrow z=-70\)