Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.
Bài 1.
x = 14
=> 13 = x - 1 ; 15 = x + 1 ; 16 = x + 2 ; 29 = 2x + 1
Thế vào N(x) ta được :
x5 - ( x + 1 )x4 + ( x + 2 )x3 - ( 2x + 1 )x2 + ( x - 1 )x
= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x
= -x = -14
Bài 2.
a) ( 1 - x - 2x3 + 3x2 )( 1 - x + 2x3 - 3x2 )
= [ ( 1 - x ) - ( 2x3 - 3x2 ) ][ ( 1 - x ) + ( 2x3 - 3x2 ) ]
= ( 1 - x )2 - ( 2x3 - 3x2 )2
= 1 - 2x + x2 - [ ( 2x3 )2 - 2.2x3.3x2 + ( 3x2 )2 ]
= x2 - 2x + 1 - ( 4x6 - 12x5 + 9x4 )
= x2 - 2x + 1 - 4x6 + 12x5 - 9x4
= -4x6 + 12x5 - 9x4 + x2 - 2x + 1
b) ( x - y + z )2 + ( z - y )2 + 2( x - y + z )( y - z )
= ( x - y + z )2 + ( z - y )2 - 2( x - y + z )( z - y )
= [ ( x - y + z ) - ( z - y ) ]2
= ( x - y + z - z + y )2
= x2
B1:
a) \(x^3-2x^2+x-2\)
= \(x^2\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+1\right)\)
b) \(2x^3+3x^2-3x-2\)
= \(2x^3-2x^2+5x^2-5x+2x-2\)
= \(2x^2\left(x-1\right)+5x\left(x-1\right)+2\left(x-1\right)\)
= \(\left(x-1\right)\left(2x^2+5x+2\right)\)
= \(\left(x-1\right)\left(2x^2+4x+x+2\right)\)
= \(\left(x-1\right)\left[2x\left(x+2\right)+\left(x+2\right)\right]\)
= \(\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)
c) \(5x^2+5y^2-x^2z+2xyz-y^2z-10xy\)
= \(5\left(x^2+2xy+y^2\right)+z\left(x^2+2xy+y^2\right)\)
= \(5\left(x+y\right)^2+z\left(x+y\right)^2\)
= \(\left(x+y\right)^2\left(5+z\right)\)
d) \(x^3-3x^2y+3xy^2-x+y-y^3\)
= \(\left(x-y\right)^3-\left(x-y\right)\)
= \(\left(x-y\right)\left[\left(x-y\right)^2-1\right]\)
= \(\left(x-y\right)\left(x-y-1\right)\left(x-y+1\right)\)
B2:
a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\left(2x-5\right).\left(-2\right)=0\)
\(\Rightarrow2x-5=0\Rightarrow x=\dfrac{5}{2}\)
b) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\left(x+3\right)\left(x^2-2x\right)=0\)
\(\left(x+3\right).x.\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=2\end{matrix}\right.\)
c) \(2x^3+3x^2+2x+3=0\)
\(x^2\left(2x+3\right)+\left(2x+3\right)=0\)
\(\left(2x+3\right)\left(x^2+1\right)=0\)
Ta thấy \(x^2+1>0\) với mọi x
\(\Rightarrow2x+3=0\Rightarrow x=\dfrac{-3}{2}\)
a, x4 + 2x3 + x2 = \(x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2=\left[x\left(x+1\right)\right]^2=\)\(\left(x^2+x\right)^2\)
b, x^3 - x + 3x^2y + 3xy^2+y^3-y
x^3 + 3x^2y + 3xy^2+y^3- x - y
(x+y)^3 - (x+y)
=(x+y)[ (x+y)^2 - 1]
=(x+y)(x+y+1)(x+y-1)
c, 5x^2 - 10xy + 5y^2 - 20(c hỗ này có dấu gì ko???) z^2
\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)
\(=3x^2+15x-18x+18-3x^2+3x-1\)
\(=18-1\)
\(=17\)
\(\Rightarrow\)\(3x\left(x+5\right)-\left(18+3x\right)\left(x-1\right)-1\)không phụ thuộc vào biến
đpcm