\(5x^2-y^2+4xy-9=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)

Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)

nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)

thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)

\(\Rightarrow x-1=0\text{ và }y+3=0\)

\(\Rightarrow x=1\text{ và }y=-3\)

\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)

Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)

hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)

\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)

\(\Rightarrow x^2=9\text{ và }6y=2\)

\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)

Câu c) làm tương tự nha

18 tháng 6 2017

Ta có : \(9^{x-1}=\frac{1}{9}\)

=> \(9^{x-1}=9^{-1}\)

=> x - 1 = -1

=> x = 0 

ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi 

=> 

18 tháng 6 2017

Cảm ơn bạn nha. Còn mấy phần kia bạn biết làm không?

22 tháng 2 2018

Ta thấy : VT >= 0

Dấu "=" xảy ra <=> x-\(\sqrt{2}\)= 0 ; y+\(\sqrt{2}\)= 0 ; x+y+z = 0 

<=> x=\(\sqrt{2}\);  y=\(-\sqrt{2}\); z = 0

Vậy ...........

Tk mk nha

4 tháng 11 2018

\(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)               (1)          (ĐK:\(x\ge0\)0)

Đặt \(\sqrt{x}=z\) ta có phương trình :

\(5z^2-2\left(2+y\right)z+y^2+1=0\)            (2)

Xem (2) là phương trình bậc hai ẩn z thì phương trình có nghiệm khi \(\Delta'=0\Rightarrow y=\frac{1}{2}\)

Thế vào (1) ta tìm được \(x=\frac{1}{2}\)

 vậy \(x=\frac{1}{2};y=\frac{1}{2}\)

   

12 tháng 5 2019

Vì \(\hept{\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\forall x\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}}\)

Do đó : \(\hept{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}}\)

30 tháng 9 2019

Giả sử  \(x=a;y=b;z=c\)

Ta có : \(\frac{2x}{a}+\frac{3y}{b}+\frac{4z}{c}\ge9\sqrt[9]{\frac{x^2y^3z^4}{a^2b^3c^4}}\)

Mà \(\left(\frac{2x}{a}+\frac{3y}{b}+\frac{4z}{c}\right)^2\le\left(x^2+y^2+z^2\right)\left(\frac{4}{a^2}+\frac{9}{b^2}+\frac{16}{c^2}\right)\)

Xảy ra khi : \(\frac{ax}{2}=\frac{by}{3}=\frac{cz}{4}\Leftrightarrow\frac{a^2}{2}=\frac{b^2}{3}=\frac{c^2}{4}\)

Ta có hệ \(\hept{\begin{cases}\frac{a^2}{2}=\frac{b^2}{3}=\frac{c^2}{4}\\a^2+b^2+c^2\end{cases}\Leftrightarrow a=\frac{\sqrt{2}}{3};b=\frac{\sqrt{3}}{3};c=\frac{2}{3}}\)

Vậy \(P_{max}=\frac{32\sqrt{3}}{6561}\) khi \(x=\frac{\sqrt{2}}{3};y=\frac{\sqrt{3}}{3};z=\frac{2}{3}\)

Chúc bạn học tốt !!!

26 tháng 8 2018

Đặt: \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)

\(\Rightarrow x=k\)

     \(y=2k\)

     \(z=3k\)

Thay x = k , y = 2k , z = 3k vào biểu thức cần cm ,ta đc:

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=\left(k+2k+3k\right)\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{1}{k}+\frac{2}{k}+\frac{3}{k}\right)\)

\(=6k.\frac{6}{k}\)

\(=\frac{36k}{k}=36\)

=.= hok tốt!!

26 tháng 8 2018

Đặt \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=k\)

Do đó  \(x=k;y=2k;z=3k\)

Thay \(x=k;y=2k;z=3k\)vào \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\)ta có 

\(\left(k+2k+3k\right).\left(\frac{1}{k}+\frac{4}{2k}+\frac{9}{3k}\right)\)

\(=6k.\left(\frac{6}{6k}+\frac{12}{6k}+\frac{18}{6k}\right)\)

\(=6k.\frac{6+12+18}{6k}\)

\(=\frac{6k.\left(6+12+18\right)}{6k}\)

\(=36\)

Do đó \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)=36\)