K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

Đặt \(2z=a>0\)

Khi đó: \(\frac{1}{2}xya=x+y+a\)

\(\Rightarrow\frac{1}{2}=\frac{1}{xy}+\frac{1}{xa}+\frac{1}{ya}\)

Vì vai trò của 3 biến x,y,a là như nhau nên không mất tổng quát g/s: \(1\le x\le y\le a\)

Khi đó \(\frac{1}{2}=\frac{1}{xy}+\frac{1}{xa}+\frac{1}{ya}\le\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}=\frac{3}{x^2}\)

\(\Rightarrow x^2\le6\Rightarrow x\in\left\{1;2\right\}\)

Nếu x = 1 : \(yz=1+y+2z\)

\(\Leftrightarrow\left(yz-y\right)-\left(2z-2\right)=3\)

\(\Leftrightarrow\left(y-2\right)\left(z-1\right)=3\)

Xét PT ước nguyên dương khá dễ

Tương tự nếu x = 2 : 

\(2yz=2+y+2z\)

\(\Leftrightarrow\left(2yz-y\right)-\left(2z-1\right)=3\)

\(\Leftrightarrow\left(2z-1\right)\left(y-1\right)=3\)

Đến đây thì mình nghĩ chắc bạn cũng có thể tự giải được rồi!

30 tháng 12 2020

Ta có: \(2\left(x+y+z\right)=xyz\)

\(\Rightarrow1=\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}\)

G/s \(x\ge y\ge z\ge1\) khi đó:

\(1=2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\le\frac{3}{z^2}\Rightarrow z^2\le3\Rightarrow z=1\)

Thay vào: \(2x+2y+2=xy\)

\(\Leftrightarrow\left(xy-2x\right)-\left(2y-4\right)=6\)

\(\Leftrightarrow\left(x-2\right)\left(y-2\right)=6\)

Ta có: \(\hept{\begin{cases}x-2\ge-1\\y-2\ge-1\end{cases}}\) nên ta có các TH sau:

TH1: \(\hept{\begin{cases}x-2=6\\y-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)

TH2: \(\hept{\begin{cases}x-2=3\\y-2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)

Vậy \(\left(x,y,z\right)\in\left\{\left(8,3,1\right);\left(5,4,1\right)\right\}\) và 2 hoán vị

16 tháng 4 2016

làm đc thì giỏi. Ko làm đc cũng chả sao cả. Biết làm rồi

giải ra cho mk tham khảo đi được ko?????? mk ko bít

5447564

18 tháng 1 2022

Xét \(x\le y\le z\) vì x,y,z nguyên dương

\(\Rightarrow xyz\ne0\)và \(x\le y\le z\Rightarrow xyz=x+y+z\le3z\)

\(\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)

- Nếu \(xy=1\Rightarrow x=y=1\)ta có: \(2+z=z\)( không thỏa mãn )

- Nếu \(xy=2\Rightarrow x=1;y=2\Rightarrow z=3\)( thỏa mãn ) ( vì \(x\le y\))

- Nếu \(xy=3\Rightarrow x=1;y=3\Rightarrow z=2\)( thỏa mãn ) ( vì \(x\le y\))

Vậy......................................

18 tháng 1 2022

 \(\text{Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. }\)
\(x,y,z\)nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

4 tháng 5 2018

Xét \(x\le y\le z\) vì x,y,z nguyên dương

\(\Rightarrow xyz\ne0\)và \(x\le y\le z\Rightarrow xyz=x+y+z\le3z\)

\(\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)

- Nếu \(xy=1\Rightarrow x=y=1\)ta có: \(2+z=z\)( không thỏa mãn )

- Nếu \(xy=2\Rightarrow x=1;y=2\Rightarrow z=3\)( thỏa mãn ) ( vì \(x\le y\))

- Nếu \(xy=3\Rightarrow x=1;y=3\Rightarrow z=2\)( thỏa mãn ) ( vì \(x\le y\))

Vậy......................................

4 tháng 5 2018

 Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).