Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\hept{\begin{cases}\frac{x}{2}.\frac{y}{3}=\frac{54}{6}=9\\\frac{x}{2}.\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2\end{cases}\Rightarrow\left(\frac{x}{2}\right)^2}=\left(\frac{y}{3}\right)^2=9\Rightarrow\orbr{\begin{cases}\frac{x}{2}=\frac{y}{3}=3\\\frac{x}{2}=\frac{y}{3}=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=6;y=9\\x=-6;y=-9\end{cases}}}\)
2.\(x:y:z=3:8:5\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.8=16\\z=2.5=10\end{cases}}\)
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
a Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\left(2\right)\)
Từ (1);(2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> x = 2 x 10 = 20
y = 2 x 15 = 30
z = 2 x 21 = 42
b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
=> x = 2k ; y = 3k
=> xy = 6.k2
=> 54 = 6.k2
=> k2 = 54 : 6 = 9
=> k = 3 hoặc k = -3
=> x = 3 x 2=6 hoặc x =( -3) x 2 = -6
y = 3 x 3 = 9 hoặc y = (-3) x 3 = -9
\(\text{a,Ta có:}\)\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\) \(\text{và}\)\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
\(\text{Áp dụng tính chất DTSBN có}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\text{Suy ra}:x=2.10=20;y=2.15=30;z=2.21=42\)
\(\text{Vậy }x=20;y=30;z=42\)
\(\text{b, Đặt }\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(\text{Theo đề, ta có}\)
\(xy=54\Rightarrow2k.3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k=3\text{hoặc }k=-3\)
\(\text{Suy ra: }x=2.3=6\text{hoặc}x=2.\left(-3\right)=-6\) \(y=3.3=9\text{ hoặc }y=-3.3=-9\)
\(\text{Vậy với k=3 }\Rightarrow x=6;y=9\)
\(\text{với k=-3\Rightarrow x=-6;y=-9}\)
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{6}\Rightarrow\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}\)
áp dụng tính chất dãy tỉ số bn ta có
\(\frac{3x}{15}=\frac{2y}{6}=\frac{2z}{12}=\frac{3x-2y+2z}{15-6+12}=\frac{24}{21}=\frac{8}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{40}{7}\\y=\frac{24}{7}\\z=\frac{48}{7}\end{cases}}\)
đề bài câu a xem lại nhé
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4};x+z=18\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\)\(x=3.2=6\)
\(y=3.3=9\)
\(z=3.4=12\)
5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
nên x=5k; y=3k
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow25k^2-9k^2=4\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)
Bài 5:
Theo đề ra, ta có:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
Trường hợp 1: Với \(k=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)
\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)
Trường hợp 2: Với \(k=-2\)
\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)
\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)
\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)
\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)
\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)