K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

1) Ta có: x/6 = y/3 = z/3 và 2x - 3y + 3z = 21

Aps dụng tính chất của dãy tỉ số bằng nhau:

x/6 = y/3 = z/3 = 2x/12 = 3y/9 = 3z/9 = (2x-3y+3z)/ (12 - 9 + 9) = 21/12 = 7/4

=> x/6 = 7/4 => x= 21/2

y/3 = 7/4 -> y= 21/4

z/3 = 7/4 -> z= 21/4

3 tháng 10 2017

1) đề nó sao ý bạn , sao lại tìm z nữa lại 2/3 ?

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{-4}=\frac{4x}{4.2}=\frac{3y}{3.\left(-4\right)}=\frac{2z}{2.\left(-4\right)}=\frac{4x+3y+2z}{8+\left(-12\right)+\left(-8\right)}=\frac{1}{-12}=\frac{-1}{12}\)

\(\frac{x}{2}=\frac{-1}{12}\Rightarrow x=\frac{-1}{6}\)

\(\frac{y}{-3}=\frac{-1}{12}\Rightarrow y=\frac{1}{4}\)

\(\frac{z}{-4}=\frac{-1}{12}\Rightarrow z=\frac{1}{3}\)

Vậy x=-1/6 ; y=1/4 và z = 1/3

3) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-3}{5}\Rightarrow\frac{x+1+y+2+z-3}{3+4+5}=\frac{18+1+2-3}{12}=\frac{18}{12}=\frac{3}{2}\)

\(\frac{x+1}{3}=\frac{3}{2}\Rightarrow x=\frac{7}{2}\)

\(\frac{y+2}{4}=\frac{3}{2}\Rightarrow y=4\)

\(\frac{z-3}{5}=\frac{3}{2}\Rightarrow z=\frac{21}{2}\)

Vậy x=7/2 ; y=4 và z=21/2

4) Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{x-1+y-2+z-3}{3+4+5}=\frac{30-\left(1+2+3\right)}{12}=\frac{24}{12}=2\)

\(\frac{x-1}{3}=2\Rightarrow x=7\)

\(\frac{y-2}{4}=2\Rightarrow y=10\)

\(\frac{z-3}{5}=2\Rightarrow z=13\)

Vậy x=7 ; y=10 và z=13

1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{3}=\dfrac{z}{3}=\dfrac{2x-3y+3z}{2\cdot6-3\cdot3+3\cdot3}=\dfrac{21}{12}=\dfrac{7}{4}\)

Do đó: x=21/2; y=21/4; z=21/4

2: ÁP dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{-4}=\dfrac{4x-3y-2z}{4\cdot2-3\cdot\left(-3\right)-2\cdot\left(-4\right)}=\dfrac{1}{25}\)

Do đó: x=2/25; y=-3/25; z=-4/25

3: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z-3}{5}=\dfrac{x+y+z+1+2-3}{3+4+5}=\dfrac{18}{12}=\dfrac{3}{2}\)

Do đó: \(\left\{{}\begin{matrix}x+1=\dfrac{9}{2}\\y+2=6\\z-3=\dfrac{15}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\y=4\\z=\dfrac{21}{2}\end{matrix}\right.\)

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

16 tháng 8 2016

Mình làm một câu ví dụ thui nha

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{5x}{50}=2\Rightarrow x=20\)

\(\frac{y}{6}=2\Rightarrow y=12\)

\(\frac{2z}{42}=2\Rightarrow x=42\)

mấy câu khác thì tương tự

tíc mình nha bạn

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

22 tháng 6 2017

a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)

22 tháng 6 2017

e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)

Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).