Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}=\dfrac{2y^2}{8}=\dfrac{2x^2}{2}\)
\(\Rightarrow\dfrac{2y^2}{8}=\dfrac{2x^2}{2}\Rightarrow y^2=4x^2\)
Lại có \(x^{10}.y^{10}=1024\Leftrightarrow x^{10}.\left(y^2\right)^5=1024\)
\(\Leftrightarrow x^{10}.\left(4x^2\right)^5=1024\Leftrightarrow4^5.x^{10}.x^{10}=1024\)
\(\Leftrightarrow1024.x^{20}=1024\Rightarrow x^{20}=1\Rightarrow x=\pm1\)
\(\Rightarrow y^2=4x^2=4\Rightarrow y=\pm2\)
Vậy \(\left\{{}\begin{matrix}x=\pm1\\y=\pm2\end{matrix}\right.\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}=\dfrac{x+y+z}{10+6+21}=\dfrac{25}{37}\)
Do đó: x=250/37; y=150/37; z=525/37
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: Ta có: x/2=y/3
nên x/8=y/12(1)
Ta có: y/4=z/5
nên y/12=z/15(2)
Từ (1) và (2) suy ra x/8=y/12=z/15
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó: x=16; y=24; z=30
phần a
vì x/2= y/3
y/5= z/4
=>x/2 nhân 1.5 = y/3 nhân 1/5
=> y/5 nhân 1/3 = z/4 nhân 1/3
=>x/10 = y/15 (1)
=>y/15 = z/12 (2)
Từ (1) , (2) ta có :
x/10 = y/15 = z/12
áp dụng t/c......
=>x/10 = y/15 = z/12
=>x+y+z/10+15+12
=> -49/37
b lm tiếp bc tiếp theo nhé✔
Vì mk cmt đầu tiên lên b tích dùm m☢
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
Bài 1:
a: \(\Leftrightarrow\dfrac{x+2}{2}=x-5\)
=>2x-10=x+2
=>x=12
b: \(\Leftrightarrow\left(x+2\right)^2=100\)
=>x+2=10 hoặc x+2=-10
=>x=-12 hoặc x=8
c: \(\Leftrightarrow\left(2x-5\right)^3=27\)
=>2x-5=3
=>2x=8
=>x=4
Ta có :
\(\dfrac{x^2+y^2}{5}=\dfrac{x^2-y^2}{3}\Leftrightarrow5\cdot\left(x^2-y^2\right)=3\cdot\left(x^2+y^2\right)\\ \Leftrightarrow5x^2-5y^2=3x^2+3y^2\\ \Leftrightarrow5x^2-3x^2=3y^2+5y^2\\ \Leftrightarrow2x^2=8y^2\\ \Leftrightarrow x^2=4y^2\)
Thay vào \(x^{10}\cdot y^{10}=1024,tacó:\)
\(x^{10}\cdot y^{10}=1024\Leftrightarrow\left(x^2\right)^5\cdot y^{10}=1024\\ \Leftrightarrow\left(4y^2\right)^5\cdot y^{10}=1024\\ \Leftrightarrow1024\cdot y^7\cdot y^{10}=1024\\ \Rightarrow y^{17}=1\\ \Rightarrow y=1\)
Mà \(x^2=4y^2\Rightarrow x^2=4\cdot1^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;1\right)\right\}\)
a) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và \(x-y+z=-49\)
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\) (1)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\) (2)
Từ (1) và (2) suy ra \(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-49}{7}=-7\)
Vậy \(\left\{{}\begin{matrix}x=\left(-7\right).10=-70\\y=\left(-7\right).15=-105\\z=\left(-7\right).12=-84\end{matrix}\right.\)
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và \(x^2-y^2+2z^2=10\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{2z^2}{32}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{10}{27}\)
Vậy ... (tự tính x, y, z nhé!)
1/ a, Ta có :
\(x-2y+3z=35\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)
Vậy ..
Ta có :
\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}\)
\(\Leftrightarrow5\left(y^2-x^2\right)=3\left(x^2+y^2\right)\)
\(\Leftrightarrow5y^2-5x^2=3x^2+3y^2\)
\(\Leftrightarrow5y^2-3y^2=3x^2+5x^2\)
\(\Leftrightarrow2y^2=8x^2\)
\(\Leftrightarrow y^2=4x^2\)
\(\Leftrightarrow y^{10}=1024.x^{10}\)
Lại có : \(x^{10}.y^{10}=1024\)
\(\Leftrightarrow x^{10}.x^{10}.1024=1024\)
\(\Leftrightarrow x^{20}.1024=1024\)
\(\Leftrightarrow x^{20}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
+) Với \(x=1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
+) Với \(x=-1\) \(\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ..
\(x^{10}.y^{10}=1024\Leftrightarrow x^2.y^2=4\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{y^2-x^2+x^2+y^2}{3+5}=\dfrac{2y^2}{8}=\dfrac{y^2}{4}\)(1)
\(\dfrac{y^2-x^2}{3}=\dfrac{x^2+y^2}{5}=\dfrac{x^2+y^2-y^2+x^2}{5-3}=\dfrac{2x^2}{2}=\dfrac{x^2}{1}\)(2)
Từ (1) và (2) ta có: \(\dfrac{y^2}{4}=\dfrac{x^2}{1}\)
Lúc này bạn có: \(\left\{{}\begin{matrix}x^2y^2=4\\\dfrac{y^2}{4}=\dfrac{x^2}{1}\end{matrix}\right.\) dễ dàng tìm được nghiệm của phương trình