Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x - 3)x - (x - 3)x + 2 = 0
(x - 3)x - (x - 3)x . (x - 3)2 = 0
(x - 3)x.(1 - (x - 3)2) = 0
=> (x - 3)x = 0 hoặc 1 - (x - 3)x = 0
=> x - 3 = 0 hoặc (x - 3)x = 1
=> x = 3
Thay x = 3 ở trường hợp 1 vào trường hợp 2
=. x - 3 = 1
=> x = 4
a: =>\(\left(x+1\right)^{x+7}-\left(x+1\right)^{x+5}=0\)
=>x(x+1)(x+2)=0
hay \(x\in\left\{0;-1;-2\right\}\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{\dfrac{5}{2}}=\dfrac{3x-5y+6z}{3\cdot3-5\cdot7+6\cdot\dfrac{5}{2}}=\dfrac{21}{-11}=\dfrac{-21}{11}\)
Do đó: x=-63/11; y=-147/11; z=-105/22
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{12}=\dfrac{x+y+z}{15+20+12}=\dfrac{\dfrac{-7}{2}}{47}=-\dfrac{7}{94}\)
Do đó: x=-105/94; y=-140/94=-70/47; z=-84/94=-42/47
\(3\left(x-1\right)=2\left(y-2\right)\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}\)(1)
\(4\left(y-2\right)=3\left(z-3\right)\Rightarrow\frac{y-2}{3}=\frac{z-3}{4}\)(2)
Từ (1) và (2) suy ra \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Leftrightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-x+3}{4+9-4}=\frac{45}{9}=5\)
\(\Rightarrow\hept{\begin{cases}x=\left(5.4+2\right):2=11\\y=\left(5.9+6\right):3=17\\z=\left(4.5+3\right)=23\end{cases}}\)