K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

a, Sửa đề \(xy=\dfrac{2}{7}\)

Ta có: \(xy=\dfrac{2}{7};yz=\dfrac{3}{2};zx=\dfrac{3}{7}\Rightarrow xy.yz.zx=\dfrac{2}{7}.\dfrac{3}{2}.\dfrac{3}{7}\)

\(\Rightarrow\left(xyz\right)^2=\dfrac{9}{49}\Leftrightarrow\left(xyz\right)^2=\left(\pm\dfrac{3}{7}\right)^2\Rightarrow\left[{}\begin{matrix}xyz=\dfrac{3}{7}\\xyz=-\dfrac{3}{7}\end{matrix}\right.\)

+) Xét trường hợp \(xyz=\dfrac{3}{7}\)\(\Rightarrow\dfrac{2}{7}.z=\dfrac{3}{7}\Rightarrow z=\dfrac{3}{7}:\dfrac{2}{7}=\dfrac{3}{2}\)

\(\Rightarrow y.\dfrac{3}{2}=\dfrac{3}{2}\Rightarrow y=1\Rightarrow x.1=\dfrac{2}{7}\Rightarrow x=\dfrac{2}{7}\)

+) Xét trường hợp \(xyz=-\dfrac{3}{7}\Rightarrow\dfrac{2}{7}.z=-\dfrac{3}{7}\Rightarrow z=-\dfrac{3}{2}\)

\(\Rightarrow y.\dfrac{-3}{2}=\dfrac{3}{2}\Rightarrow y=-1\Rightarrow x.\left(-1\right)=\dfrac{2}{7}\Rightarrow x=-\dfrac{2}{7}\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=1\\z=\dfrac{2}{7}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-1\\z=-\dfrac{2}{7}\end{matrix}\right.\)

b, Ta có: \(xy=9z;yz=4x;zx=16y\Rightarrow\dfrac{xy}{z}=9;\dfrac{yz}{x}=4;\dfrac{zx}{y}=16\)

\(\Rightarrow\dfrac{xy}{z}.\dfrac{yz}{x}.\dfrac{zx}{y}=9.4.16\Rightarrow xyz=576\)

\(\Rightarrow xy=\dfrac{576}{z};yz=\dfrac{576}{x};zx=\dfrac{576}{y}\)

\(\Rightarrow\dfrac{576}{z}=9z\Rightarrow9z^2=576\Rightarrow z^2=64\Rightarrow z=\pm8\)

\(\dfrac{576}{x}=4x\Rightarrow4x^2=576\Rightarrow x^2=144\Rightarrow x=\pm12\)

\(\dfrac{576}{y}=16y\Rightarrow16y^2=576\Rightarrow y^2=36\Rightarrow y=\pm6\)

Vì xyz=156 => x;y;z dương hoặc trong x;y;z có 2 số âm

\(\Rightarrow\left\{{}\begin{matrix}x=12\\y=6\\z=8\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=12\\y=-6\\z=-8\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-12\\y=6\\z=-8\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-12\\y=-6\\z=8\end{matrix}\right.\)

Vậy...

25 tháng 6 2017

a) \(xy=\dfrac{3}{7};yz=\dfrac{3}{2};zx=\dfrac{3}{7}\)

từ \(xy=\dfrac{3}{7}vàzx=\dfrac{3}{7}\) \(\Rightarrow\) \(z=y\)

\(yz=\dfrac{3}{2}\) \(\Leftrightarrow\) \(y^2=\dfrac{3}{2}\) \(\Leftrightarrow\) \(y=\sqrt{\dfrac{3}{4}}\) \(\Leftrightarrow\) \(y=z=\dfrac{\sqrt{3}}{2}\)

\(\Rightarrow\) \(xy=\dfrac{3}{7}\) \(\Leftrightarrow\) \(x.\dfrac{\sqrt{3}}{2}=\dfrac{3}{7}\) \(\Leftrightarrow\) \(x=\dfrac{3}{7}:\dfrac{\sqrt{3}}{2}\) = \(\dfrac{3}{7}.\dfrac{2}{\sqrt{3}}=\dfrac{6}{7\sqrt{3}}\) = \(\dfrac{2\sqrt{3}}{7}\)

vậy \(x=\dfrac{2\sqrt{3}}{7}\) ; \(y=\dfrac{\sqrt{3}}{2}\) ; \(z=\dfrac{\sqrt{3}}{2}\)

24 tháng 6 2017

Theo bài ra ta có: \(xy=\dfrac{2}{7}\left(1\right)\)

\(yz=\dfrac{3}{2}\left(2\right)\)

\(zx=\dfrac{3}{7}\left(3\right)\)

Vế nhân vế (1);(2);(3), ta có: \(xy.yz.zx=\dfrac{2}{7}.\dfrac{3}{2}.\dfrac{3}{7}\)

\(\left(x.y.z\right)^2=\dfrac{9}{49}=\left(\dfrac{3}{7}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}xyz=\dfrac{3}{7}\\xyz=-\dfrac{3}{7}\end{matrix}\right.\)

b, Theo bài ra ta có: \(xy=9z;yz=4x;zx=16y\)

Nhân vế theo vế ta có: \(\left(xyz\right)^2=xyz.576\)

\(\Rightarrow xyz=576\)

9 tháng 4 2017

Ta có: (xy).(yz).(zx)=z.(4x).(9y)

=> (xyz)^2=36.xyz

=> (xyz)^2-36.xyz=0

=>(xyz).(xyz-36)=0

=> xyz=0 hoặc xyz-36=0

Nếu xyz=0 kết hợp đề bài => x=y=z=0

Nếu xyz-36=0 => xyz=36.

Mà xy=z=> z.z=36=>z^2=36=> z=6 hoặc -6

yz=4x=> xyz=x.4x=>36=4.x^2=>x^2=9=> x=3 hoặc -3

zx=9y=>xyz=y.9y=>36=9.y^2=>y^2=4=> y= 2 hoặc -2

Vậy...........

29 tháng 9 2019

Giải:

Nhân từng vế ba đẳng thức ta được : \((xyz)^2=36xyz\)

Nếu một trong các số x,y,z bằng 0 thì hai số còn lại cũng bằng 0

Nếu cả ba số x,y,z \(\ne\)0 thì chia hai vế cho xyz được xyz = 36.Từ xyz = 36 và xy = z ta được z2 = 36 nên z = \(\pm6\). Từ xyz = 36 và yz = 4x ta được 4x2 = 36 nên x = \(\pm3\). Từ xyz = 36 và zx = 9y , ta được 9y2 = 36 nên y = \(\pm2\)

Nếu z = 6 thì x và y cùng dấu nên x = 3 , y = 2 , hoặc x = -3 , y = -2.Nếu z = -6 thì a và b trái dấu nên x = 3 , y = -2 hoặc x = -3 , y = 2

Tóm lại,có 5 bộ số \((x;y;z)\)thỏa mãn bài toán là :

\((0;0;0),(3;2;6),(-3;-2;6),(3;-2;-6),(-3;2;-6)\)

28 tháng 9 2019

 xy =z; yz = 4x; zx =9y

=> xy.yz.zx = z.4x.9y

  (xyz)2 = 36xyz

=> xyz =36

 ( đến đây mik lm tắt nhé)

=> x= \(\pm\)3

    y = \(\pm\)2

   z = \(\pm\)6

16 tháng 3 2017

Xy=2; yz=3; zx=6  => x=2y

=> y=1; x=2; z=3

22 tháng 2 2019

Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0

Suy ra x;y;z khác 0

Đặt \(2=a;4=b;6=c\) khi đó ta có:

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)

\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)

Mà \(x;y;z\ne0\) suy ra:

\(ayz+bxz=bxz+xcy=cxy+ayz\)

\(\Rightarrow az=cx;bx=ay\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Rightarrow x=ak;y=bk;z=ck\)

Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{k}{2}=k^2\)

\(\Rightarrow k=\frac{1}{2}\)

\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)

Thay số vào,ta được:

\(x=1;y=2;z=3\)

15 tháng 3 2019

\(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{xz}{6x+2z}\)(4z chứ 4x là sai đề rồi bạn)

\(\Leftrightarrow\frac{x}{2}+\frac{y}{4}=\frac{y}{4}+\frac{z}{6}=\frac{z}{6}+\frac{x}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)tự làm tiếp :))

17 tháng 3 2022

ảo

 

27 tháng 9 2019

sorry sai đề :v

Sửa \(\frac{xy}{2y+4x}+\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)

27 tháng 9 2019

Ta có :

 \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)

\(\Leftrightarrow\frac{xyz}{2yz+4xz}=\frac{xyz}{4xz+6xy}=\frac{xyz}{6xy+2yz}\)

\(\Rightarrow2yz+4xz=4xz+6xy=6xy+2yz\)

\(\Rightarrow\hept{\begin{cases}2yz=6xy\\4xz=2yz\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3x\\y=2x\end{cases}}\)

\(\rightarrow x:y:z=1:2:3\frac{xy}{2y+4x}\)  \(=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{2x^2}{4y+4x}=\frac{x}{4}.\frac{x^2+y^2+z^2}{2^2+4^2+6^2}=\frac{14x^2}{56}=\frac{x^2}{4}\rightarrow\frac{x^2}{4}=\frac{x}{4}\)

\(\Rightarrow\frac{x^2-x}{4}=0\Leftrightarrow x-1=0\left(x\ne0\right)\)

\(\Rightarrow x=1\rightarrow x=1;y=2;z=3\)

Làm thử thôi sai thì thôi nha !