Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\left(\dfrac{x}{2}\right)^3=\dfrac{xyz}{2.3.5}\Leftrightarrow\dfrac{x^3}{8}=\dfrac{240}{30}=8\Leftrightarrow x^3=64\Leftrightarrow x=4\Rightarrow\left\{{}\begin{matrix}y=6\\z=10\end{matrix}\right.\)
Đặt\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)=k
=>x = 2k; y = 3k; z =5k
Mà x.y.z=240 => 2k.3k.5k=240
=>(k.k.k).(2.3.5)=240
=> \(k^3\) . 30 =240
=> \(k^3\) =240: 30
=> \(k^3\) = 8
=> k = \(\pm\) 2
Từ k=2 => x=2.2=4
k=-2=> x=-2.2=-4
Từ k=2 => y=2.3
k=-2=> y=-2.3=-6
Từ k=2=> z=2.5=10
k=-2=> z=-2.5=-10
Vậy x\(\in\pm\) 4
y\(\in\pm\) 6
z\(\in\pm\) 10
Tiếc was bài này mk lm đc mà đang onl bằng Đt nên ko vào cx đc huhuhuh
thế từ h tới khoảng 4 h chiều nếu bn có thể vào trả lời thì giúp mk nhé
a) Ta đặt: \(\frac{x}{4}=\frac{y}{3}=\frac{z}{-2}=k\)
\(\Rightarrow x=4k;y=3k;z=-2k\)
\(\Rightarrow xyz=\left(4.3.-2\right).k^3\)
\(\Rightarrow xyz=\left(-24\right).k^3\)
\(\Rightarrow k^3=240:\left(-24\right)=-10\)
\(\Rightarrow\)(đề sai, không ra số tự nhiên)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)
thay x=2k;y=3k;z=5k vào x.y.z=810 ta được:
2k.3k.5k=810
30.k3=810
k3=27
=>k=3
=>x=2.3=6
y=3.3=9
z=5.3=15
Lời giải :
a) Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{2}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=5k\\y=4k\\z=2k\end{cases}}\)
Ta có : \(xyz=40k^3=240\)
\(\Leftrightarrow k^3=6\)
\(\Leftrightarrow k=\sqrt[3]{6}\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{2}=\sqrt[3]{6}\)
\(\Leftrightarrow\hept{\begin{cases}x=5\sqrt[3]{6}\\y=4\sqrt[3]{6}\\z=2\sqrt[3]{6}\end{cases}}\)
Vậy....
b) \(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\Leftrightarrow\frac{x}{9}=\frac{y}{6}\)
Ta cũng có \(\frac{y}{3}=\frac{z}{2}\Leftrightarrow\frac{y}{6}=\frac{z}{4}\)
Khi đó : \(\frac{x}{9}=\frac{y}{6}=\frac{z}{4}=\frac{x-y+z}{9-6+4}=\frac{21}{7}=3\)
\(\Leftrightarrow\hept{\begin{cases}x=27\\y=18\\z=12\end{cases}}\)
Vậy...
a) Đặt\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=k.\)
Ta có : x = 5k ; y = 2k ; z = 3k và xyz = 240
=> 5k . 2k . 3k = 240
=> k3 . 30 = 240
=> k3 = 8
=> k = 2
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=2\Leftrightarrow x=10\\\frac{y}{2}=2\Leftrightarrow y=4\\\frac{z}{3}=2\Leftrightarrow x=6\end{cases}}\)
Vậy : x = 10; y = 4; z = 6
b) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{4}=\frac{x^2-y^2-z^2}{16-9-4}=\frac{12}{3}=4\)
Suy ra :
\(\frac{x^2}{16}=4\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
\(\frac{y^2}{9}=4\Leftrightarrow y^2=36\Leftrightarrow y=\pm6\)
\(\frac{z^2}{4}=4\Leftrightarrow z^2=16\Leftrightarrow z=\pm4\)
Vậy \(\hept{\begin{cases}x=8\\y=6\\z=4\end{cases}}\)hoặc \(\hept{\begin{cases}x=-8\\y=-6\\z=-4\end{cases}}\)
c) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{16+9+25}=\frac{200}{50}=4\)
Suy ra :
\(\frac{x^2}{16}=4\Leftrightarrow x^2=64\Leftrightarrow x=\pm8\)
\(\frac{y^2}{9}=4\Leftrightarrow y^2=36\Leftrightarrow y=\pm6\)
\(\frac{z^2}{25}=4\Leftrightarrow z^2=100\Leftrightarrow z=\pm10\)
Vậy :\(\hept{\begin{cases}x=8\\y=6\\z=10\end{cases}}\)hoặc \(\hept{\begin{cases}x=-8\\y=-6\\z=-10\end{cases}}\)
Ta có x;y;z tỉ lệ với 3;4;5 => \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
=> \(\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Ta có x.y.z=240
(=) 3k.4k.5k=240
(=) \(60.k^3=240\)
(=) \(k^3=4\)
sai đề bài rồi bạn ơi !
Theo bài ra ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và x.y.z=240
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow x=3\cdot k;y=4\cdot k;z=5\cdot k\)\(\)
Thay x=3.k;y=4.k;z=5.k vào x.y.z=240 ta được:
3.k.4.k.5.k=240
\(3\cdot k=240:3:4:5\)
3.k=4
\(k=\frac{4}{3}\)
Thay \(k=\frac{4}{3}\)vào x=3.k;y=4.k;z=5.k ta được:
\(x=3\cdot\frac{4}{3}\Rightarrow x=4\)
\(y=4\cdot\frac{4}{3}\Rightarrow y=\frac{16}{3}\)
\(x=5\cdot\frac{4}{3}\Rightarrow x=\frac{20}{3}\)
Vậy x=4;y=\(\frac{16}{3};z=\frac{20}{3}\)
\(Đặt\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k,\)\(\) ta có: \(x=2k;y=3k;z=5k\)
Vì \(x.y.z=-240\Rightarrow2k.3k.5k=-240\)
\(\Rightarrow30k^3=-240\Rightarrow k^3=-240:30=-8\)
\(\Rightarrow k^3=\left(-2\right)^3\Rightarrow k=-2\)
\(\)Ta có:
\(x=2k\Rightarrow x=-2.2=-4\)
\(y=3k\Rightarrow y=-2.3=-6\)
\(z=5k\Rightarrow z=-2.5=-10\)
Vậy \(x=-4;y=-6;z=-10\)
Từ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x.y.y}{2.3.5}=\dfrac{-240}{30}\) = \(-8\)
=> \(\dfrac{x}{2}=\left(-8\right);\dfrac{y}{3}=\left(-8\right);\dfrac{z}{5}=\left(-8\right)\)
Với : \(\dfrac{x}{2}=\left(-8\right)\Rightarrow x=-16\)
Với:\(\dfrac{y}{3}=\left(-8\right)\Rightarrow y=-24\)
Với:\(\dfrac{z}{5}=\left(-8\right)\Rightarrow z=-40\)