K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2015

Bạn vào câu hỏi tương tự nha !!!

\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3x+3}{9}=\frac{2y+4}{-8}=\frac{4z-12}{20}=\frac{3x+3+2y+4+4z-12}{-8+9+20}=\frac{42}{21}=2\)

=>x+1=6=>x=5

y+2=2.(-4)=-8=>y=-10

z-3=10=>x=13

vậy x=5;y=-10;z=13

24 tháng 7 2015

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}=\frac{3.\left(x+1\right)+2.\left(y+2\right)+4.\left(z-3\right)}{3.3+2.\left(-4\right)+4.5}\)

\(=\frac{3x+3+2y+4+4z-12}{9-8+20}=\frac{\left(3x+2y+4z\right)+\left(3+4-12\right)}{21}\)

\(=\frac{47-5}{21}=2\)

suy ra: \(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)

\(\frac{x+2}{-4}=2\Rightarrow x+2=-8\Rightarrow x=-6\)

\(\frac{z-3}{5}=2\Rightarrow z-3=10\Rightarrow z=13\)

30 tháng 10 2019

Câu hỏi của Trang Đinh Huyền - Toán lớp 7 - Học toán với OnlineMath

24 tháng 7 2015

x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15

adtcdtsbn:

x/4=y/6=z/15=x+y+z/4+6+15=50/25=2

suy ra : x/4=2=>x=4.2=8

y/6=2=>y=2.6=12

z/15=2 => z=15.2=30

 

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

1. Áp dụng TCDTSBN ta có:

$\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+5}{6}=\frac{x-1+(y-2)-(z+5)}{3+4-6}$

$=\frac{x+y-z-8}{1}=\frac{8-8}{1}=0$

$\Rightarrow x-1=y-2=z+5=0$

$\Rightarrow x=1; y=2; z=-5$

 

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

2.

Có:

$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}$

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

$\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}=\frac{2x+3y+4z+31}{40}=\frac{9+31}{40}=1$

Suy ra:

$x+1=2.1=2\Rightarrow x=1$

$y+3=1.4=4\Rightarrow y=1$

$z+5=6.1=6\Rightarrow z=1$

 

$

6 tháng 9 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{x+5}{6}=\frac{2.\left(x+1\right)+3.\left(y+3\right)+4.\left(z+5\right)}{2.2+3.4+4.6}\)

\(=\frac{2x+2+3y+9+4z+20}{40}=\frac{9+31}{40}=1\)

Suy ra : 

\(\frac{x+1}{2}=1\Rightarrow x+1=2\Rightarrow x=1\)

\(\frac{y+3}{4}=1\Rightarrow y+3=4\Rightarrow y=1\)

\(\frac{z+5}{6}=1\Rightarrow z+5=6\Rightarrow z=1\)

Vậy x = y = z = 1

6 tháng 9 2017

Ta có : \(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}=\frac{2x+2+3y+9+4z+20}{4+12+24}\)

\(=\frac{39+1}{40}=\frac{40}{40}=1\)

Nên : x + 1/2 = 1 => x + 1 = 2 => x = 1

         y + 3/4 = 1 => y + 3 = 4 => y = 1

         z + 5/6 = 1 => z + 5 = 1 => z = 1

Vậy ......................

8 tháng 11 2016

Chắc câu hỏi là tìm x, y, z

1) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}=\frac{\left(x-1\right)+\left(y-2\right)-\left(z+7\right)}{3+4-5}=\frac{x+y-z-10}{2}=\frac{8-10}{2}=-1\)

=> x-1 = 3.(-1) => x = -2

     y-2 = 4.(-1) => y = -2

     z+7 =5.(-1) => z = -12

2) Làm tương tự, nhưng trước khi cộng tử và mẫu các phân số với nhau thì nhân cả tử và mẫu phân số thứ nhất với 3; phân số thứ hai với 2 và phân số thứ ba với 4 để xuất hiện tổng 3x + 2y +4z.

\(\frac{3\left(x+1\right)}{3.3}=\frac{2\left(y+2\right)}{-4.2}=\frac{4\left(z-3\right)}{5.4}=\frac{3\left(x+1\right)+2\left(y+2\right)+4\left(z-3\right)}{9-8+20}=\frac{47-5}{21}=2\)

=> x + 1 = 3.2 => x = 5

     y+ 2 = -4.2 => y = -10

   z-3 =5.2 => z = 13